首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4 - 6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by TPT or MXT, Chk2 rather than ATM mediates p53 phosphorylation.  相似文献   

2.
The ATM (ataxia telangiectasia mutated) kinase plays an essential role in maintaining genome integrity by coordinating cell cycle arrest, apoptosis, and DNA damage repair. Phosphorylation of ATM at serine 1981 (ATMpSer1981) by DNA damage activates ATM, which subsequently phosphorylates H2AX Ser139 (gammaH2AX), Chk2 Thr68 (Chk2pThr68), and p53 Ser15 (p53pSer15). To determine the role of the ATM pathway in prostate cancer tumorigenesis, we have analyzed 35 primary prostate cancer specimens for ATMpSer1981 (ATM activation), Chk2pThr68, gammaH2AX, and p53pSer15 by immunohistochemistry (IHC) in normal glands, prostatic intraepithelial neoplasias (PINs), and carcinomas. Increases in the intensities of ATMpSer1981, Chk2pThr68, and gammaH2AX and in the percentage of cells that are positive for ATMpSer1981, Chk2pThr68, or gammaH2AX were observed in PINs (p<0.001) compared to normal prostatic glands and carcinoma. However, this pattern of immunostaining was not seen for p53pSer15. Thus, ATM and Chk2 are specifically activated in PINs. As PINs are generally regarded as precursors of prostatic carcinoma, our results suggest that ATM and Chk2 activation at earlier stages of prostate tumorigenesis suppresses tumor progression, with attenuation of ATM activation leading to cancer progression.  相似文献   

3.
Mouse embryonic stem cells (mESC) are characterized by high proliferation activity. mESC are highly sensitive to genotoxic stresses and do not undergo G1/S checkpoint upon DNA-damage. mESC are supposed to develop sensitive mechanisms to maintain genomic integrity provided by either DNA damage repair or elimination of defected cells by apoptosis. The issue of how mESC recognize the damages and execute DNA repair remains to be studied. We analyzed the kinetics of DNA repair foci marked by antibodies to phosphorylated ATM kinase and histone H2AX (γH2AX). We showed that mESC display non-induced DNA single-strand breaks (SSBs), as revealed by comet-assay, and a noticeable background of γH2AX staining. Exposure of mESC to γ-irradiation induced the accumulation of phosphorylated ATM-kinase in the nucleus as well as the formation of additional γH2AX foci, which disappeared thereafter. To decrease the background of γH2AX staining in control non-irradiated cells, we pre-synchronized mESC at the G2/M by low concentration of nocodazol for a short time (6 h). The cells were then irradiated and stained for γH2AX. Irradiation induced the formation of γH2AX foci both in G2-phase and mitotic cells, which evidenced for the active state of DNA-damage signaling at these stages of the cell cycle in mESC. Due to the G1/S checkpoint is compromised in mESCs, we checked, whether wild-type p53, a target for ATM kinase, was phosphorylated in response to γ-irradiation. The p53 was barely phosphorylated in response to irradiation, which correlated with a very low expression of p53-target p21/Waf1 gene. Thus, in spite of the dysfunction of the p53/Waf1 pathway and the lack of cell cycle checkpoints, the mESC are capable of activating ATM and inducing γH2AX foci formation, which are necessary for the activation of DNA damage response.  相似文献   

4.
The Bloom syndrome helicase (BLM) is critical for genomic stability. A defect in BLM activity results in the cancer-predisposing Bloom syndrome (BS). Here, we report that BLM-deficient cell lines and primary fibroblasts display an endogenously activated DNA double-strand break checkpoint response with prominent levels of phosphorylated histone H2AX (gamma-H2AX), Chk2 (p(T68)Chk2), and ATM (p(S1981)ATM) colocalizing in nuclear foci. Interestingly, the mitotic fraction of gamma-H2AX foci did not seem to be higher in BLM-deficient cells, indicating that these lesions form transiently during interphase. Pulse labeling with iododeoxyuridine and immunofluorescence microscopy showed the colocalization of gamma-H2AX, ATM, and Chk2 together with replication foci. Those foci costained for Rad51, indicating homologous recombination at these replication sites. We therefore analyzed replication in BS cells using a single molecule approach on combed DNA fibers. In addition to a higher frequency of replication fork barriers, BS cells displayed a reduced average fork velocity and global reduction of interorigin distances indicative of an elevated frequency of origin firing. Because BS is one of the most penetrant cancer-predisposing hereditary diseases, it is likely that the lack of BLM engages the cells in a situation similar to precancerous tissues with replication stress. To our knowledge, this is the first report of high ATM-Chk2 kinase activation and its linkage to replication defects in a BS model.  相似文献   

5.
H2AX is a histone variant which is present and ubiquitously distributed throughout the genome. An immunocytochemical assay using antibodies capable of recognizing histone H2AX phosphorylated at serine 139 (gammaH2AX) is very sensitive and is a specific indicator for the existence of a DNA double strand break. Although heat stress has been reported to induce the formation of gammaH2AX foci, no gammaH2AX foci formation was observed in several mammalian cell lines after heat shock. Since this was in contrast to earlier reports, the work described here was intended to verify that heat-induced gammaH2AX foci do form in mammalian cell lines other than the cell lines used in earlier reports concerning gammaH2AX foci formation. The cell lines used in this work includes cell lines with differing p53-gene status (H1299, H1299/neo, H1299/mp53 and H1299/wtp53 cells), various cancer cell lines (HeLa, HepG2, U2-OS cells), normal human cells (HEK-293 and AG1522), and cell lines established from other species (MEF normal mouse cells and CHL normal Chinese hamster cells). Exponentially growing cells were exposed to heat shock (42 degrees C for 6 h or 45.5 degrees C for 20 min) or to X-rays (3Gy). The presence of gammaH2AX was examined with immunocytochemistry and flow cytometry. Induction of gammaH2AX foci formation was observed in all of the mammalian cell lines used here after heat-treatment as well as after X-irradiation. However, the intensity of gammaH2AX was different in the different cell lines used. These results confirm that heat can induce gammaH2AX foci formation in many mammalian cell lines.  相似文献   

6.
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.  相似文献   

7.
Zhou C  Li Z  Diao H  Yu Y  Zhu W  Dai Y  Chen FF  Yang J 《Mutation research》2006,604(1-2):8-18
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.  相似文献   

8.
Checkpoint kinase 1 (Chk1) regulates cell cycle checkpoints and DNA damage repair in response to genotoxic stress. Inhibition of Chk1 is an emerging strategy for potentiating the cytotoxicity of chemotherapeutic drugs. Here, we demonstrate that AZD7762, an ATP-competitive Chk1/2 inhibitor induces γ-H2AX in gemcitabine-treated cells by altering both dynamics and stability of replication forks, allowing the firing of suppressed replication origins as measured by DNA fiber combing and causing a dramatic increase in DNA breaks as measured by comet assay. Furthermore, we identify ATM and DNA-PK, rather than ATR, as the kinases mediating γ-H2AX induction, suggesting AZD7762 converts stalled forks into double strand breaks (DSBs). Consistent with DSB formation upon fork collapse, cells deficient in DSB repair by lacking BRCA2, XRCC3, or DNA-PK were selectively more sensitive to combined AZD7762 and gemcitabine. Checkpoint abrogation by AZD7762 also caused premature mitosis in gemcitabine-treated cells arrested in G1/early S-phase. Prevention of premature mitotic entry via Cdk1 siRNA knockdown suppressed apoptosis. These results demonstrate that chemosensitization of gemcitabine by Chk1 inhibition results from at least three cellular events namely activation of origin firing, destabilization of stalled replication forks, and entry of cells with damaged DNA into lethal mitosis. Additionally, the current study indicates that the combination of Chk1 inhibitor and gemcitabine may be particularly effective in targeting tumors with specific DNA repair defects.  相似文献   

9.
10.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.  相似文献   

11.
Kodym, E., Kodym, R., Choy, H. and Saha, D. Sustained Metaphase Arrest in Response to Ionizing Radiation in a Non-small Cell Lung Cancer Cell Line. Radiat. Res. 169, 46-58 (2008). In solid tumors, non-apoptotic forms of tumor cell inactivation such as mitotic catastrophe appear to be predominant in the response to DNA-damaging agents. Despite its importance, the underlying molecular mechanisms of mitotic catastrophe have been only partially elucidated. We found that a large fraction of HCC2279 non-small cell lung cancer cells underwent mitotic catastrophe after irradiation. Cells were arrested in metaphase with chromosomal damage indicated by DNA fragments displaced from the metaphase plate and considerable numbers of residual gamma-H2AX foci. Although TP53 was nonfunctional, we detected a prompt radiation response on the level of checkpoint kinases. In contrast, CDC25A was the only checkpoint phosphatase that was responsive to radiation. CDC25B was not detectable, and CDC25C was constitutively phosphorylated at serine 216, leading to its cytoplasmic sequestration and functional inactivation. Therefore, radiation-induced mitotic catastrophe in HCC2279 cells appears to be induced by a combination of relative insufficiencies in the p53-mediated and checkpoint kinase-mediated pathways leading to premature entry into mitosis. Displaced chromosome fragments triggering an intra-M checkpoint in cells entering mitosis presumably result in a sustained metaphase arrest. The phenomenon found in these cells, which were derived directly from a human patient, might be responsible for therapy-induced genetic instability of tumors.  相似文献   

12.
DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1   总被引:1,自引:0,他引:1  
Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.  相似文献   

13.
DNA double-strand breaks originating from diverse causes in eukaryotic cells are accompanied by the formation of phosphorylated H2AX (gammaH2AX) foci. Here we show that gammaH2AX formation is also a cellular response to topoisomerase I cleavage complexes known to induce DNA double-strand breaks during replication. In HCT116 human carcinoma cells exposed to the topoisomerase I inhibitor camptothecin, the resulting gammaH2AX formation can be prevented with the phosphatidylinositol 3-OH kinase-related kinase inhibitor wortmannin; however, in contrast to ionizing radiation, only camptothecin-induced gammaH2AX formation can be prevented with the DNA replication inhibitor aphidicolin and enhanced with the checkpoint abrogator 7-hydroxystaurosporine. This gammaH2AX formation is suppressed in ATR (ataxia telangiectasia and Rad3-related) deficient cells and markedly decreased in DNA-dependent protein kinase-deficient cells but is not abrogated in ataxia telangiectasia cells, indicating that ATR and DNA-dependent protein kinase are the kinases primarily involved in gammaH2AX formation at the sites of replication-mediated DNA double-strand breaks. Mre11- and Nbs1-deficient cells are still able to form gammaH2AX. However, H2AX-/- mouse embryonic fibroblasts exposed to camptothecin fail to form Mre11, Rad50, and Nbs1 foci and are hypersensitive to camptothecin. These results demonstrate a conserved gammaH2AX response for double-strand breaks induced by replication fork collision. gammaH2AX foci are required for recruiting repair and checkpoint protein complexes to the replication break sites.  相似文献   

14.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

15.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

16.
Microscopically visible gammaH2AX foci signify the presence of DNA double-strand breaks (dsbs) in irradiated cells. However, large foci are also observed in untreated tumour cells, and high numbers reduce the sensitivity for detecting drug or radiation-induced DNA breaks. SW756 cervical carcinoma cells that express about 50 gammaH2AX foci per cell (i.e., equivalent to the number of breaks produced by about 2Gy) showed similar numbers of dsbs as C33A cells that exhibit fewer than three foci per cell. The possibility that differences in numbers of these endogenous foci could be explained by genomic instability perhaps related to misrepair was examined. For 17cell lines selected from the panel of NCI-60 tumor cells previously characterized for karyotypic complexity [A.V. Roschke, G. Tonon, K.S. Gehlhaus, N. McTyre, K.J. Bussey, S. Lababidi, D.A. Scudiero, J.N. Weinstein, I.R. Kirsch, Karyotypic complexity of the NCI-60 drug-screening panel, Cancer Res. 63 (2003) 8634-8647], there was a significant trend (r=0.6) for cell lines with greater numbers of structural or numerical chromosomal rearrangements to show a higher background expression of gammaH2AX. Moreover, cells from this panel with wild-type p53 showed a significantly lower background level of gammaH2AX than cells with mutant p53. To confirm the importance of p53 expression, endogenous and radiation-induced gammaH2AX expression were analyzed using four isogenic SKOV3 cell lines varying in p53 function. Again, higher gammaH2AX expression was found in SKOV3 cell lines expressing mutant p53 compared to wild-type p53. HFL-1 primary lung fibroblasts showed a progressive increase in gammaH2AX as they moved towards senescence, confirming the importance of telomere instability in the development of at least some gammaH2AX foci. Therefore, the explanation for high endogenous levels of gammaH2AX in some tumor cells appears to be multifactorial and may be best described as a consequence of chromatin instability.  相似文献   

17.
Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.  相似文献   

18.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

19.
Histone H2AX is phosphorylated on Ser-139 by ATM kinase in response to damage that induces dsDNA breaks. Immunocytochemical detection of phosphorylated H2AX (gammaH2AX), thus, reveals the presence of dsDNA breaks in chromatin. Multiparameter cytometry was presently used to correlate the appearance of gammaH2AX with: a. cell cycle phase; b. caspase-3 activation; and c. apoptosis-associated DNA fragmentation in individual human leukemic HL-60 cells treated with the DNA topoisomerase I (topo1) inhibitors topotecan (TPT) and camptothecin (CPT) or with the topo2 inhibitor mitoxantrone (MTX). In response to TPT or CPT maximal increase of gammaH2AX immunofluorescence was seen in S-phase cells by 90 min. In contrast, following MTX treatment the maximal rise of gammaH2AX was detected at 2 h in G1 cells and the cell cycle phase specificity was much less apparent. A linear relationship between the drug concentration and increase of gammaH2AX immunofluorescence was seen only up to 200 nM TPT; a decline in gammaH2AX was apparent at a concentration range between 0.4 and 1.6 microM TPT. Thus, the intensity of gammaH2AX immunofluorescence, as a marker of cell survival following TPT treatment, can be used only within a limited range of drug concentration. Following treatment with TPT, CPT or MTX the peak of H2AX phosphorylation preceded caspase-3 activation and the appearance of apoptosis-associated DNA fragmentation, both selective to S-phase cells. Progression of apoptosis was paralleled by a decrease in gammaH2AX immunofluorescence. The data also indicate that regardless whether treated with inhibitors of topo1 or topo2, at comparable levels of dsDNA breaks, the cells replicating DNA have a higher proclivity to undergo apoptosis compared to G1 or G2/M cells.  相似文献   

20.
Dong Z  Hu H  Chen W  Li Z  Liu G  Yang J 《Mutation research》2007,629(1):40-48
The involvement of DNA damage in heat shock-induced cell death remains controversial. To investigate whether heat shock can induce DNA damage, we tested the induction of gammaH2AX foci formation, a sensitive indicator for DNA double strand breaks (DSBs), by heat shock treatment in several cell lines including HeLa, CHL, HepG2, and 293 cells, as well as human spermatozoa. Although heat shock treatment can decrease cell viability, no induction of gammaH2AX foci formation was observed in any of these cells. In addition, a p53-deficient cell line (U2OSE6tet24) and a flap endonuclease 1 (FEN1)-deficient cell line (FL-FEN1(-)) also did not show induction of gammaH2AX foci after heat shock treatment. Finally, it was found that 30min of pre-heat shock can inhibit gammaH2AX foci formation induced by an alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which is known to induce gammaH2AX foci formation. On the other hand, heat shock after MNNG treatment did not affect the gammaH2AX foci formation induced by MNNG. Taken together, these data suggest that although heat shock might influence the gammaH2AX foci formation process, it does not induce DNA damage in the cells tested in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号