首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemodynamic effects of calcitonin gene-related peptide in conscious rats   总被引:7,自引:0,他引:7  
The cardiovascular effects of calcitonin gene-related peptide (CGRP) were examined in conscious, unrestrained rats. Changes in mean arterial pressure, heart rate and cardiac output were continuously monitored before and after i.v. bolus injection of CGRP (0.1-5 micrograms/kg). Injection of the peptide caused dose-dependent reductions in mean arterial pressure (-24 +/- 4 mmHg), which were accompanied by marked tachycardia. Cardiac output was significantly increased after CGRP but little change was observed in stroke volume. CGRP also reduced total peripheral resistance (-46 +/- 6%). These data indicate that the hypotensive actions of CGRP are mediated through peripheral vasodilation rather than through reductions in cardiac output. Pretreatment with propranolol significantly reduced the tachycardia responses to CGRP from 81 +/- 11 beats/min to 36 +/- 4 beats/min, but did not abolish the increase in heart rate. These data suggest that CGRP produces a tachycardia through reflex increases in cardiac sympathetic tone and through possible direct positive chronotropic effects on the heart.  相似文献   

2.
The effect of acetylcholine on regional coronary blood flow and myocardial O2 consumption was determined in order to compare its direct vasodilatory effects with the metabolic vasoconstriction it induces. Experiments were conducted in seven untreated control anaesthetized open chest rabbits and seven rabbits which were infused with acetylcholine (1 microgram/kg/min). Myocardial blood flow was determined before and during acetylcholine infusion using radioactive microspheres. Regional arterial and venous O2 saturation was analyzed microspectrophotometrically. Acetylcholine reduced heart rate by 30% and significantly depressed the arterial systolic and diastolic blood pressure. The mean O2 consumption was significantly reduced with acetylcholine from 9.6 +/- 2.0 to 6.1 +/- 3.6 ml O2/min/100 g. Coronary blood flow decreased uniformly across the left ventricular wall by about 50% and resistance to flow increased by 42% despite potential direct cholinergic vasodilation. O2 extraction was not affected by acetylcholine infusion. It is concluded that the acetylcholine infusion directly decreased myocardial O2 consumption, which in turn lowered the coronary blood flow and increased the resistance. The decreased flow was related to a reduced metabolic demand rather than a direct result of lowered blood pressure. Unaffected myocardial O2 extraction also suggested that blood flow and metabolism were matched. This indicates that direct cholinergic vasodilation of the coronary vasculature does not allow a greater reduction in metabolism than flow in the anaesthetized open chest rabbit heart during acetylcholine infusion.  相似文献   

3.
The goal of the current study was to determine the effects of cAMP-mediated coronary reactivity in conscious pigs with stunned myocardium induced by 1.5 h coronary stenosis (CS) and 12 h coronary artery reperfusion (CAR). Domestic swine (n = 5) were chronically instrumented with a coronary artery blood flow (CBF) probe, hydraulic occluder, left ventricular pressure gauge, wall-thickening crystals in the ischemic and nonischemic zones, and a coronary sinus catheter. The hydraulic occluder was inflated to induce a CS with a stable 38 +/- 1% reduction in CBF for 1.5 h. Before flow reduction and during CAR, cAMP-induced coronary vasodilation was investigated by forskolin (20 nmol. kg(-1). min(-1)). Enhanced CBF responses [+62 +/- 9%, P < 0.05, compared with pre-CS (+37 +/- 3%)] were observed for forskolin at 12 h after CAR as well as for bradykinin and reactive hyperemia. With the use of a similar protocol during systemic nitric oxide (NO) synthase inhibition with N(omega)-nitro-L-arginine (30 mg. kg(-1). day(-1) for 3 days), the enhanced CBF responses to forskolin, bradykinin, and reactive hyperemia were not observed after CS. Isolated microvessel preparations from pigs (n = 8) also demonstrated enhanced NO production to direct stimulation of adenylyl cyclase with forskolin (+71 +/- 12%) or NKH-477 (+60 +/- 10%) and administration of 8-bromo-cAMP (+74 +/- 13%), which were abolished by protein kinase A or NO synthase inhibition. These data indicate that cAMP stimulation elicits direct coronary vasodilation and that this action is amplified in the presence of sustained myocardial stunning after recovery from CS. This enhanced cAMP coronary vasodilation is mediated by an NO mechanism that may be involved in myocardial protection from ischemic injury.  相似文献   

4.
Coronary and systemic vascular response to inspiratory resistive breathing.   总被引:1,自引:0,他引:1  
To evaluate the coronary and systemic cardiovascular response to graded inspiratory resistive breathing, seven dogs were studied 2-4 wk after chronic instrumentation to measure circumflex coronary artery and ascending aortic blood flows as well as aortic and left ventricular (LV) blood pressures. The experiments were performed under chloralose anesthesia (to exclude any confounding emotional effects by dyspnea on cardiovascular variables) and hyperoxic conditions (to prevent chemoreflex activation by hypoxemia). In a randomized fashion, the dogs were subjected to graded inspiratory resistive breathing (spontaneous breathing alone and moderate and severe resistive loading, corresponding to resistances of approximately 0, 40, and 110 cmH2O.s.l-1, respectively). Each run lasted 10 min. Compared with mechanical ventilation with the respiratory muscles at rest, spontaneous breathing alone and moderate and severe inspiratory resistive loading induced pronounced and significant increases in circumflex coronary blood flow (19, 32, and 62%, respectively), which were almost exclusively accounted for by significant decrements in coronary vascular resistance and were paralleled (r = 0.88, P less than 0.0001) by significant increments (18, 31, and 57%) in heart rate transmural-aortic pressure product, an indicator of LV myocardial O2 demand. An increase in myocardial O2 consumption during resistive breathing was confirmed by analysis of coronary sinus blood samples in additional experiments (n = 3). Cardiac output significantly increased (10, 14, and 35%) because of increases in heart rate (15, 24, and 49%), with LV stroke volume and diastolic dimensions remaining unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Adenosine acts as a cardioprotective agent by producing coronary vasodilation, decreasing heart rate and by antagonizing the cardiostimulatory effect of catecholamines; adenosine also exerts a direct negative inotropic effect. Myocardial ischemia is known to be associated with enhanced levels of adenosine, increased protein kinase C (PKC) activity and prostacyclin (PGI2) release. The present study was conducted to determine if myocardial ischemia alters the cardioprotective effect of adenosine by increasing PKC activity and PGI2 release in the isolated rat heart perfused at 10 ml/min with Krebs-Henseleit buffer (KHB; 95% O2+5% CO2). Adenosine (10 mmol/min) reduced myocardial contractility as indicated by a decrease in contractility (dp/dtmax), heart rate (HR) and coronary perfusion pressure (PP). In hearts subjected to 30 min of ischemia (without perfusion) and then reperfused with KHB, adenosine failed to decrease dp/dtmax, HR or PP. However, during infusion of PKC inhibitor H-7 (1-(5-Isoquinolinesulfonyl)-2-methylpiperazine hydrochloride) (H-7; 6 mmol/min), which commenced 10 min before ischemia and continued throughout reperfusion, adenosine produced a decrease in dp/dtmax, HR and PP, similar to that before ischemia. Infusion of the PKC activator phorbol 12,13-dibutyrate (PDBu; 2 nmol/min) but not an inactive analogue in non-ischemic hearts prevented the adenosine induced decrease in dp/dtmax. During infusion of H-7, PDBu failed to block the direct negative inotropic effect of adenosine in non-ischemic hearts. In addition, pretreatment with H-7 or indomethacin (cyclooxygenase inhibitor) significantly reduced the PGI2 release following ischemia. This data suggest that PKC and PGI2 regulate the direct negative inotropic effect of adenosine, which is abolished during ischemia.  相似文献   

6.
N Miyawaki  T Furuta  T Shigei  H Yamauchi  T Iso 《Life sciences》1991,48(20):1903-1909
The cardiovascular effects of SD-3211, a novel benzothiazine Ca++ channel blocker, were compared with those of diltiazem and nicardipine in Langendorff-perfused rabbit hearts. SD-3211 was more potent in increasing coronary artery flow than in depressing cardiac function (i.e., contractile force, heart rate and conduction time). The relative specificity of SD-3211 for coronary vasodilation to cardiodepression was clearly greater than that of diltiazem, but less than that of nicardipine. Thus, the present study demonstrates that SD-3211, despite a non-dihydropyridine type of Ca++ channel blocker, can be characterized as a potent coronary vasodilator with a little effect on cardiac function.  相似文献   

7.
The purpose of this study was to elucidate the mechanism of action of arachidonic acid in the isolated rat heart perfused with Krebs solution at a constant flow. Administration of arachidonic acid, 3.3-33 nmol, into the heart caused a small transient increase followed by a pronounced decrease in coronary perfusion pressure and increased myocardial tension, heart rate, and the output of prostaglandins (6-keto-PGF1 alpha, PGE2, and PGF2 alpha). Administration of structurally similar fatty acids, dihomo-gamma-linolenic acid, and 8,14,17-eicosatrienoic acid, produced vasoconstriction and decreased myocardial tension without affecting heart rate or the output of prostaglandins. Infusion of PGI2, PGF2 alpha, or PGE2 produced coronary vasodilation and increased myocardial tension, whereas PGF2 alpha increased heart rate, an effect which was not prevented by propranolol. Indomethacin blocked the effect of arachidonic acid on myocardial tension and heart rate, but only reduced the duration of coronary vasodilation. The initial component of arachidonic acid induced coronary vasodilation which was unaffected by indomethacin and also remained unaltered during the infusion of three structurally dissimilar lipoxygenase inhibitors, eicosatetraynoic acid, nordihydroguaiaretic acid, and 1-phenyl-3-pyrazolidone. Indomethacin did not alter the effects of the exogenously administered prostaglandins on perfusion pressure or myocardial tension; however, it blocked the effect of PGF2 alpha on heart rate. The effect of arachidonic acid or PGF2 alpha to increase heart rate was not blocked by thromboxane synthetase inhibitors, imidazole, or OKY-1581. We conclude that the cardiac effects of arachidonic acid are mediated primarily through its conversion to cyclooxygenase products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the mediator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K(+)(ATP) channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward betaadrenoceptor coronary vasodilation that accounts for approximately 25% of coronary vasodilation observed during exercise. There is also a feed-forward alpha-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.  相似文献   

9.
Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diastolic cell length consistent with a rightward shift of the passive length-tension relation. This shift is explained by cGMP-induced phosphorylation of troponin I, which prevents calcium-independent diastolic cross-bridge cycling and concomitant diastolic stiffening of the myocardium. Similar improvements in diastolic stiffness have been observed in isolated guinea pig hearts, in pacing-induced heart failure dogs, and in patients with dilated cardiomyopathy or aortic stenosis and have been shown to result in higher LV preload reserve and stroke work. NO also controls myocardial energetics through its effects on mitochondrial respiration, oxygen consumption, and substrate utilization. The effects of NO on diastolic LV performance appear to be synergistic with its effects on myocardial energetics through prevention of myocardial energy wastage induced by LV contraction against late-systolic reflected arterial pressure waves and through prevention of diastolic LV stiffening, which is essential for the maintenance of adequate subendocardial coronary perfusion. A drop in these concerted actions of NO on diastolic LV distensibility and on myocardial energetics could well be instrumental for the relentless deterioration of failing myocardium.  相似文献   

10.
Heart output, arterial pressures, and heart rate were measured directly in conscious unrestrained eels (Anguilla australis) and responses to intra-arterial injection of adrenaline monitored. Adrenaline increased systemic vascular resistance, heart output, and cardiac stroke volume in all animals. In some cases small transient decreases in stroke volume and hence heart output were seen at the peak of the pressor response: These probably reflect a passive decrease in systolic emptying due to increased afterload on the heart. In most cases, adrenaline produced tachycardia; but two animals showed consistent and profound reflex bradycardia, which was accompanied by a concomitant increase in stroke volume such that heart output was maintained or increased slightly. The interaction of changes in heart output and systemic vascular resistance produced complex and variable changes in arterial pressure. There was no consistent pattern of changes in branchial vascular resistance. Atropine treatment in vivo revealed vagal cardio-inhibitory tone in some animals and always blocked the reflex bradycardia seen during adrenaline induced hypertension. In some animals, adrenaline injection after atropine pretreatment led to the establishment of cyclic changes in arterial pressure with a period of about 1 min (Mayer waves).  相似文献   

11.
In acute experiments on anesthetized dogs under closed-chest conditions, we used the technique of double lumen catheterization of coronary vessels and peripheral vessel bed. We studied the role of endothelium-dependent relaxing factor/nitric oxide (EDRF/NO) in the development of parasympathetic coronary vasodilation after excitation of cardiac receptors. Under conditions of pharmacological stimulation of cardiac receptors of the left ventricle and short-lasting episodes of local myocardial ischemia, we also examined the effects of inhibition of NO synthesis on the development of cardiogenic depressor reflexes (hypotension and peripheral vasodilation). It was found that the reflex coronary dilatation following excitation of the cardiac (left ventricular) receptors significantly decreased after systemic NO synthase inhibition. Thus, NO production is one of the effector mechanisms of the development of coronary vessel dilatation; this conclusion is confirmed by changes in the dilatation level after blockade of this process with L-NNA (nitro-ω-L-arginine). We pioneered in demonstrating that after the blockade of NO synthesis peripheral vessel vasodilation decreases or disappeas altogether when cardiogenic reflexes are realized following pharmacological excitation of cardiac receptors with veratrine or catecholamine injections, and vasoconstrictor responses evoked by myocardial ischemia are significantly intensified. It is suggested that the influences of NO-dependent mechanisms exert a dual effect on sympathic control-mediated peripheral vasodilation during cardiogenic reflexes. Such mechanisms reduce central sympathetic tone and/or concurrently provide peripheral inhibition of neural sympathetic influences; in the latter case, NO-dependent cardiogenic reflexes play a crucial role in compensatory reactions after an injury to the heart.  相似文献   

12.
The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (N(G)-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ET(B) receptor (ET(BR)) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ET(A) receptors, and did not alter the negative inotropic ET-1 influence mediated by ET(BR). Cts action through ET(BR) was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the beta-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli.  相似文献   

13.
Recent experiments demonstrate that feedforward sympathetic beta-adrenoceptor coronary vasodilation occurs during exercise. The present study quantitatively examined the contributions of epinephrine and norepinephrine to exercise coronary hyperemia and tested the hypothesis that circulating epinephrine causes feedforward beta-receptor-mediated coronary dilation. Dogs (n = 10) were chronically instrumented with a circumflex coronary artery flow transducer and catheters in the aorta and coronary sinus. During strenuous treadmill exercise, myocardial oxygen consumption increased by approximately 3.9-fold, coronary blood flow increased by approximately 3.6-fold, and arterial plasma epinephrine concentration increased by approximately 2.4-fold over resting levels. At arterial concentrations matching those during strenuous exercise, epinephrine infused at rest (n = 6) produced modest increases (18%) in flow and myocardial oxygen consumption but no evidence of direct beta-adrenoceptor-mediated coronary vasodilation. Arterial norepinephrine concentration increased by approximately 5. 4-fold during exercise, and coronary venous norepinephrine was always higher than arterial, indicating norepinephrine release from cardiac sympathetic nerves. With the use of a mathematical model of cardiac capillary norepinephrine transport, these norepinephrine concentrations predict an average interstitial norepinephrine concentration of approximately 12 nM during strenuous exercise. Published dose-response data indicate that this norepinephrine concentration increases isolated coronary arteriolar conductance by approximately 67%, which can account for approximately 25% of the increase in flow observed during exercise. It is concluded that a significant portion of coronary exercise hyperemia ( approximately 25%) can be accounted for by direct feedforward beta-adrenoceptor coronary vascular effects of norepinephrine, with little effect from circulating epinephrine.  相似文献   

14.
Vasodilators.     
T. T. Zsotér 《CMAJ》1983,129(5):424-8,432
This article reviews the types, mechanisms of action and therapeutic applications of currently used vasodilators. Vasodilators have little value if there is vascular obstruction but are effective in the treatment of systemic hypertension and of myocardial ischemia and heart failure. Since the various groups of vasodilators have widely different actions on the coronary arteries, the peripheral arterial circulation and venous tone, an understanding of the specific modes of action and of the systemic effects of these drugs is essential if they are to be used appropriately and their side effects minimized.  相似文献   

15.
16.
Diltiazem, a 1,5-benzothiazepine, has demonstrated efficacy in the treatment of numerous cardiovascular diseases. TA-3090, a newly synthetized 1,5-benzothiazepine compound was studied in open-chest anesthetized dogs to characterize its hemodynamic properties, to compare it with diltiazem, and finally to correlate hemodynamic properties and plasma level concentrations. Anesthetized open-chest dogs were instrumented with electronic devices and fluid-filled catheters to monitor cardiac, coronary, and peripheral hemodynamic changes. A cumulative intravenous bolus administration of TA-3090 (n = 16) or diltiazem (n = 15) (15, 50, 200, and 400 micrograms/kg) was carried out, and blood samples were taken before and 5 min following each dose administration. Hemodynamic changes were followed for 30 min after each administration, at which time most hemodynamic parameters were back to baseline levels. The results indicate that both TA-3090 and diltiazem elicit slight peripheral and coronary vasodilator properties at low doses (15 and 50 micrograms/kg). With higher dosage, hemodynamic effects were maximal: coronary blood flow increased by 75%, arterial pressure decreased by 25%, and reflex positive inotropic effects were also observed. Heart rate was significantly reduced (10%). Comparison between TA-3090 and diltiazem indicates that both drugs elicit coronary vasodilator selectivity and TA-3090 has a prolonged duration of action compared with that of diltiazem. A straightforward relationship is demonstrated between vasodilator properties and plasma levels of either TA-3090 or diltiazem. Our data suggest that with plasma levels between 40 and 80 ng/mL, significant hemodynamic changes were observed with TA-3090. Changes of heart rate were not correlated with plasma levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cardiac and vascular actions of sarafotoxin S6b and endothelin-1   总被引:3,自引:0,他引:3  
Snake venom-derived sarafotoxin S6B (SRT) and porcine endothelium-derived endothelin-1 (ET) have striking structural similarities. In conscious, freely-moving rats, ET (0.67 nmol/kg) produced a transient tachycardia and fall in arterial blood pressure which was followed by a long-lasting increase in arterial pressure, bradycardia, decrease in cardiac output (CO) and marked increase in total peripheral resistance. In contrast, SRT (0.67 nmol/kg) produced only the sustained cardiovascular responses. The sustained cardiovascular effects of SRT or ET were similarly attenuated by nifedipine. SRT and ET (30 nM) produced vasoconstriction in the isolated perfused mesenteric vascular bed without initial vasodilation. SRT and ET had potent positive inotropic and negative chronotropic effects on isolated perfused hearts and induced toxic reactions including coronary vasospasm, arrhythmias, A-V block and ventricular fibrillation. In addition to SRT lacking the initial depressor response in vivo, several differences in the activities of the peptides were also observed. ET produced greater and longer-lasting actions than SRT in producing pressor and vasoconstrictor responses in all 3 preparations, and in its ability to induce toxic effects on the heart.  相似文献   

18.
In mammals, the in vivo coronary blood flow and myocardial oxygen consumption are closely related via changes in coronary resistance in response to the metabolic demands of the myocardium. A fine neurohumoral regulation of coronary resistance holds true also in fish, and particularly in teleosts, where several vasoconstrictive and vasodilative mechanisms have been described, with numerous putative effectors, including prostanoids, acetylcholine, adrenaline, serotonin, adenosine, steroid hormones. Here, a resume is reported of the available evidence on the involvement of nitric oxide (NO) in the control of coronary resistance in teleosts and particularly in salmonids. Most of the evidence reported is from a comprehensive study performed on a Langedorff-type preparation of the isolated trout heart. Using a physio-pharmacological approach, the experiments performed on this preparation have demonstrated that trout coronary resistance is reduced by l-arginine (NOS substrate), nitroprusside and SNAP (NO donors) and is increased by the NOS inhibitors l-NNA and l-NAME. The vasodilation induced by nitroprusside is blocked by the guanylate cyclase inhibitor methylene blue. l-arginine increases NO release in the perfusate, while l-NNA reduces the release. NO release is inversely related with the coronary resistance. l-NNA inhibits the vasodilatory effects of acetylcholine, serotonin and adenosine. The vasodilation induced by adenosine is accompanied by NO release and involves stretch receptors. Hypoxia induces vasodilation and both adenosine and NO release in the preparation; the NO release under hypoxia is blocked by theophylline. On the whole these data indicate that NO plays a central role in the control of coronary resistance in trout. In particular, a main role for NO as an amplifier of the adenosine-mediated vasodilation under hypoxia can be hypothesized.  相似文献   

19.
Vasoconstricting prostaglandins were injected, in bolus doses, into the lower abdominal aorta on the left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were continuously monitored. Thromboxane B2 had no effect on either vascular bed in doses up to 100 micrograms. PGF2 alpha produced mild vasoconstriction in both vascular beds with no systemic response. The endoperoxide analogues, U-44069 and U-46619, produced complex responses in both vascular beds. Initial vasodilation was followed rapidly by prolonged vasoconstriction. In the coronary circulation, vasoconstriction was temporarily masked by a hyperaemic phase. The U-compounds also affected MAP, possibly as a result of pulmonary and systemic vasoconstriction.  相似文献   

20.
The cardiovascular effects of exogenously administered histamine were investigated in conscious newborn piglets aged 10-11 days during normoxia (21% (v/v) O2) and during isocapneic alveolar hypoxia (10% O2, 3% CO2, 87% N2) to determine its influence on preexisting vascular tone. In the first set of experiments (n = 6), four histamine doses (1,10,50,100 micrograms/kg) were tested in sequence during normoxia. Histamine was injected intravenously and cardiovascular variables were recorded. Heart rate increased at all doses studied. Pulmonary and systemic arterial pressures, cardiac output and stroke volume were unchanged at the low histamine doses (1 and 10 micrograms), but all decreased at the high doses (50 and 100 micrograms). Pulmonary and systemic vascular resistances were unchanged at each dose. In the second set of experiments (n = 7), two histamine doses (1 and 5 micrograms/kg) were administered during alveolar hypoxia. Hypoxia caused increases in heart rate and pulmonary arterial pressure and resistance. After injection of each dose of histamine, pulmonary pressure and resistance decreased but remained higher than baseline. No other measured cardiovascular variables were altered. Thus, during normoxia histamine did not alter vascular tone, but high doses did adversely affect myocardial function. During alveolar hypoxia histamine caused weak pulmonary vasodilation at doses that did not alter systemic vascular tone. Histamine is not a potent modifier of the circulation in the newborn piglet during conditions of normoxaemia or hypoxaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号