首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-chain Fv constructs comprising a biotin mimetic peptide (BMP) and scFv of CC49 monoclonal antibody were produced to improve pretargeted radioimmunotherapy. BMP units that bind streptavidin were added to the carboxyl terminus of the CC49 V(H) region. An engineered scFvBMP monomer and a sc(Fv)(2)BMP dimer showed an excellent antigen recognition in vitro with a specific binding of 72+/-5 and 81+/-4%, respectively. Properties of 125I-sc(Fv)(2)BMP in mice bearing LS-174T xenografts were comparable to these of the parent 125I-sc(Fv)(2). Complexing of scFvBMPs with streptavidin increased tumor targeting and gave exceptionally high tumor-to-blood values of 63+/-7 for 125I-sc(Fv)(2)BMP-streptavidin compared with 37+/-4 for sc(Fv)(2)BMP at 72h after administration. High tumor and negligible normal tissue levels of these novel pretargeting constructs indicate a great potential for pretargeted radioimmunotherapy.  相似文献   

2.
For the therapy of solid tumors, co-administration of angiotensin II (AngII) results in an increased uptake of drugs into the tumor interstitium. We have engineered a dimeric sc(Fv)(2)-AngII fusion construct that combines the superior kinetics of covalent dimeric scFvs [sc(Fv)(2)], recognizing the pancarcinoma tumor-associated antigen 72 (TAG-72), with the advantageous intrinsic activity of AngII. The binding characteristics of the fusion construct were unaltered by the addition of the AngII sequence [affinity constant K(A) 1.18 x 10(7) and 8.42 x 10(6) M(-1) for sc(Fv)(2) and sc(Fv)(2)-AngII, respectively]. The binding of the fusion construct to the angiotensin receptor (AT(1)) was similar to AngII, and the arterial contraction was 16 +/- 1% of the response observed with norepinephrine. In animal studies, the radiolabeled sc(Fv)(2)-AngII construct exhibited similar uptake and a more homogeneous distribution within the tumor as compared to sc(Fv)(2).  相似文献   

3.
Hexahistidine tag (His-tag) is the most widely used tag for affinity purification of recombinant proteins for their structural and functional analysis. In the present study, single chain Fv (scFv) constructs were engineered form the monoclonal antibody (MAb) CC49 which is among the most extensively studied MAb for cancer therapy. For achieving efficient purification of scFvs by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the C-terminal (scFv-His6) or N-terminal (His6-scFv) of the coding sequence. Solid-phase radioimmunoassay for scFv-His6 showed only 20-25% binding whereas both His6-scFv and scFv (no His-tag) showed 60-65% binding. Surface plasmon resonance studies by BIAcore revealed the binding affinity constant (KA) for His6-scFv and scFv as 1.19 x 10(6) M(-1) and 3.27 x 10(6) M(-1), respectively. No K(A) value could be calculated for scFv-His6 due to poor binding kinetics (kon and koff). Comparative homology modeling for scFv and scFv-His6 showed that the C-terminal position of the His-tag partially covered the antigen-binding site of the protein. The study demonstrates that the C-terminal position of His-tag on the CC49 scFv adversely affects the binding properties of the construct. The results emphasize the importance of functional characterization of recombinant proteins expressed with purification tags.  相似文献   

4.
Kobayashi N  Kato Y  Oyama H  Taga S  Niwa T  Sun P  Ohtoyo M  Goto J 《Steroids》2008,73(14):1485-1499
A single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) was generated to begin the construction of a library of various mutated anti-steroid antibodies with an improved affinity and/or specificity. A hybridoma clone secreting a specific anti-E(2) antibody (Ab#E4-4) was established by the cell fusion using splenocytes from a mouse immunized with an immunogenic E(2)-carrier conjugate. DNA fragments encoding the variable heavy and light domains (V(H) and V(L)) of the Ab#E4-4 were cloned and combined to give the scFv gene fragment encoding the sequence 5'-V(H)-(GGGGS)(3)-V(L)-3'. Compared to the Ab#E4-4 Fab fragment, soluble scFv (scFv#E4-4) protein showed a similar affinity to E(2) (K(a)=8.6x10(7)M(-1)) and a similar cross-reaction profile. To further study the fundamentals for creating a comprehensive library of mutated scFvs, the scFvV(H) and V(L) genes were amplified using error-prone PCR conditions and the frequency and pattern of incorporated mutations were investigated. For this, regular Taq polymerase was used in the presence of unequal concentrations of dNTPs. At 1.0mM MnCl(2), the error frequency reached to 8.5% and 11% for the V(H) and V(L) respectively, although a significant transition/transversion bias was observed. ScFv#E4-4 and the mutated polyclonal scFvs were then displayed on filamentous phage under various packaging conditions. Cultivation of the transformed bacteria was more suitable at 25 degrees C than at higher temperatures for the packaging of scFv-bearing phagemid particles. Based on these experimental conditions, an scFv-displaying phage library, each scFv member in which has mutated complementarity-determining region (CDR) H2, H3, L1, and L3, was constructed. A soluble scFv clone (scFv#m1-e7) with a mutated amino acid (I-->V) in CDR L1, isolated from this library, showed threefold higher affinity (K(a)=2.6 x 10(8)M(-1)) than that of scFv#4-4.  相似文献   

5.
Single-chain Fv fragments (scFvs) against a corticosteroid, 11-deoxycortisol (11-DC), have been generated as a template antibody fragment from which a comprehensive mutated antibody library containing various anti-steroid antibodies could be constructed. The cDNAs encoding variable heavy (V(H)) and light (V(L)) domains of a mouse anti-11-DC antibody (CET-M8), were amplified by RT-PCR, combined via a common linker to construct the sequence of 5'-V(H)-(Gly(4)Ser)(3)-V(L)-3', and cloned into a phagemid vector, pEXmide 5. The phage clones exhibiting binding activity to 11-DC were isolated after single panning against a hapten-immobilizing immunotube. The scFv gene in one of these clones was reamplified to introduce the ochre codons, and then expressed in the bacterial periplasm as the soluble antibody fragment. Two different scFvs (#6 and #12) were cloned, whose binding characteristics were examined by a radioimmunoassay using a tritium-labeled 11-DC. Both of them showed high affinity (K(a)=1.3x10(10)M(-1)) and practical specificity (cross-reactivity: cortisol, <0.2%; cortisone, <0.3%) to 11-DC, and furthermore, strong reactivity with an anti-idiotype antibody which recognizes the paratope of CET-M8. These results suggest that the present scFvs retain the three-dimensional structure of the paratope of the original monoclonal antibody.  相似文献   

6.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

7.
A single-chain Fv (scFv) antibody fragment against the hepatitis B surface antigen (HBsAg) was expressed in Escherichia coli in the form of two independent fusion proteins, with either 60 ('long') or 27 ('short') amino acid N-terminal encoding sequences related to human interleukin-2. Both fusion proteins were expressed insolubly and at high levels in the bacterial cytoplasm (approximately 30% of total bacterial protein in MM294 cells at a laboratory scale). When recombinant cells were cultured in 5-1 fermentors, expression and optical density increased 2- and 4-fold, respectively, compared to a previous periplasmic insoluble version of the same anti HBsAg scFv. After extraction and solubilization in urea, the cytoplasmic scFvs were purified using immobilized metal ion affinity chromatography, followed by DTT treatment, and refolding by dialysis against a basic pH buffer containing EDTA. The refolded scFvs recognized the recombinant HBsAg in ELISA. Results of an ELISA where antigen affinity chromatography repurified scFvs were used as standards, indicated that refolding efficiencies were high: 56.2% for the 'short' fusion scFv, and 50.6% for the 'long' fusion scFv. Corrected final yields of active scFv were 30.3 and 27.3 mg l-1, respectively, for the aforementioned fusion proteins, 5-6 times better than those reported for the periplasmic scFv variant.  相似文献   

8.
不同连接肽的双价单链抗体基因的构建及表达   总被引:2,自引:0,他引:2  
采用基因重组技术分别借助不同长度的连接肽[G4S和(G4S)3],将两个相同的抗人大肠癌单链抗体基因ND-1scFv共价连接,构建表达载体pET-28a( )ND-1sc(Fv)2,并在大肠杆菌BL21中表达ND-1sc(Fv)2的融合蛋白。应用Ni2 亲和层析方法对表达产物进行纯化,SDS-PAGE、免疫荧光法(IFA)和ELISA对纯化后的蛋白质进行纯度和免疫活性分析。结果表明成功构建了表达载体pET-28a( )ND-1sc(Fv)2,并在大肠杆菌中获得高效表达,其表达产物以不溶性包涵体形式存在。纯化后ND-1sc(Fv)2-5、ND-1sc(Fv)2-15的蛋白质纯度分别为90%和86%。IFA及ELISA结果表明,二者均保留了亲本抗体的免疫活性,对表达在人大肠癌细胞上的肿瘤相关抗原LEA具有特异结合活性,其免疫活性均明显高于ND-1scFv,其中ND-1sc(Fv)2-15的免疫活性更接近于亲本单抗ND-1,该抗体有望成为大肠癌临床导向诊断和治疗的理想载体。  相似文献   

9.
High affinity ScFvs from a single rabbit immunized with multiple haptens   总被引:2,自引:0,他引:2  
We report the generation of single-chain Fv (scFv) fragments with high affinities against four different hapten molecules from a single immunised rabbit. The rabbit was immunised with a mixture of protein conjugates of four different haptens, namely the herbicide mecoprop and derivatives of the herbicides atrazine, simazine, and isoproturon. An scFv phage display library was constructed, and several scFvs with high affinity against each hapten were isolated. For each hapten, a single binder was selected by k(off) ranking and used for affinity determination. The affinities were in sub-nanomolar range and the lowest K(d) value obtained was 6.75 x 10(-10) M. An unusual feature of one of the anti-isoproturon scFvs was its ability to retain binding activity at pH1.7. The utility and potential of using a single animal and immunisation with multiple antigens for the production of multiple, specific, high affinity scFvs by phage display is discussed.  相似文献   

10.
Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants   总被引:3,自引:0,他引:3  
The two murine single-chain Fv (scFv) genes against human interleukin IL-4 and IL-6 cytokines were cloned in a plant expression vector (pGEJAE1) and mobilized to Agrobacterium tumefaciens. Tobacco leaf discs were co-cultured with Agrobacterium and transferred to selective media for regeneration. The tobacco in vitro plants produced scFvs against human IL-4 and IL-6. Only 8% of transformed plants expressing anti-IL-4 scFv were obtained versus 76% of transformed plants expressing anti-IL-6 scFv. In addition, some plants producing anti-IL-4 and anti-IL-6 scFvs aged more rapidly in in vitro conditions and in greenhouse pots than did control plants. Western blot analysis showed that the transformed Nicotiana tabacum plants contained proteins with an apparent molecular mass on electrophoresis of ca. 32 kDa, corresponding to the predicted size of the scFvs. As entire plant root seemed to accumulate more scFv than did leaves, we decided to continue working with isolated roots. Anti-IL-6 scFvs were detected in cultivated roots and their culture media. Functional anti-IL-6 scFv accounted for 0.16–0.18% of total soluble proteins. The affinity of the anti-IL-6 scFv produced in plants and measured by Biacore was similar to that of scFv produced in Escherichia coli. The high levels of antibody accumulation in isolated roots and secretion into the medium demonstrate the potential for producing recombinant protein in bioreactor systems.these authors contributed equally to this workthese authors contributed equally to this work  相似文献   

11.
《MABS-AUSTIN》2013,5(6):552-562
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.  相似文献   

12.
A fluorescein-binding single-chain Fv (scFv) was chosen as a model for the study of the physicochemical parameters associated with synthetic IgG fragments. Three such scFv proteins were designed from the primary sequences of one anti-fluorescyl monoclonal antibody (Mab 4.4.20). These were constructed with varying-length interdomain peptide linkers of between 12 and 25 residues, expressed in Escherichia coli, and the protein folding, stability, and antigen-binding characteristics were assessed. Efficient renaturation could be accomplished in vitro to yield approximately 26 mg of active scFv/L of fermentation. Scatchard analysis for fluorescein ligand binding revealed that the scFv designs come within 2-fold of the Ka = 1.99 (+/- 0.18) x 10(9) observed for the parental 4.4.20 Fab and have identical stoichiometries (n approximately 0.99). Reversible solvent denaturation studies demonstrated that the unfolding/refolding equilibria for the scFv proteins can be fit to a simple two-state model and that two of the scFv designs were found to be slightly more stable than single IgG domains (VL and CL) when assessed in terms of the free energy of unfolding, delta Gon-u, or nearly identical to other multiple domain immunoglobulin proteins such as light chains and Fab's when relative transition midpoints, Cm, are compared. Linkers which conferred conformational flexibility beyond the minimally required length of 12 residues were found to have a stabilizing effect. By these criteria of ligand-binding function and protein stability, the scFv proteins were found to be bona fide minimal replicas of their parental IgG molecules.  相似文献   

13.
Lymphocytes from eight individuals out of 60 healthy donors, whose plasmas showed relatively higher antibody titer for a target antigen of death receptor 5 (DR5), were selected for the source of antibody genes to construct so called an anti-DR5 pseudo-immune human single-chain fragment variable (scFv) library on the yeast cell surface (approximately 2x10(6) diversity). Compared with a large nonimmune human scFv library (approximately 1x10(9) diversity), the repertoire of the pseudo-immune scFv library was significantly biased toward the target antigen, which facilitated rapid enrichments of the target-specific high affinity scFvs during selections by fluorescence activated cell sortings. Isolated scFvs, HW5 and HW6, from the pseudo-immune library showed much higher specificity and affinity for the targeted antigen than those from the nonimmune library. Our results suggest that a pseudo-immune antibody library is very efficient to isolate target-specific high affinity antibody from a relatively small sized library.  相似文献   

14.
Single-chain Fv antibody fragments (scFvs) incorporate a polypeptide linker to tether the VH and VL domains together. An scFv molecule with a linker 5-12 residues long cannot fold into a functional Fv domain and instead associates with a second scFv molecule to form a bivalent dimer (diabody). Direct ligation of VH and VL domains further restricts association and forces three scFv molecules to associate into a trivalent trimer (triabody). We have defined the effect of linker length on scFv association by constructing a series of scFvs from anti-neuraminidase antibody NC10 in which the linker varied from one to four glycine residues. NC10 scFv molecules containing linkers of three and four residues showed a strong preference for dimer formation (diabodies), whereas a linker length of one or two glycine residues prevented the formation of diabodies and directed scFv association into trimers (triabodies). The data suggest a relatively strict transition from dimer (diabody) to trimer (triabody) upon reduction of the linker length from three to two glycine residues. Modelling studies are consistent with three residues as the minimum linker length compatible with diabody formation. Electron microscope images of complexes formed between the NC10 scFv multimers and an anti-idiotype Fab' showed that the dimer was bivalent for antigen binding and the trimer was trivalent.  相似文献   

15.
The 6.7 murine monoclonal antibody (mAb) recognizes the human CD18 antigen and is therefore of interest as an anti-inflammatory agent. The 6.7 heavy variable chain (VH) was humanized using the closest human germline sequence as the template on to which to graft the murine complementary determining regions (CDRs). Two versions were proposed, one in which the residue proline 45 of the murine form was maintained and another in which this framework residue was changed to the leucine found in the human sequence. These VH humanized versions were expressed in the yeast Pichia pastoris as hemi-humanized single-chain Fv (scFvs), with the VL from the murine antibody. The scFv from the murine antibody was also expressed. The binding activities of the murine and both hemi-humanized scFvs were determined by flow cytometry analysis. All the constructions were able to recognize human lymphocytes harboring CD18, indicating successful humanization with transfer of the original binding capability. Some differences between the two hemi-humanized versions were observed. The method used was simple and straightforward, with no need for refined structural analyses and could be used for the humanization of other antibodies.  相似文献   

16.
用柑桔溃疡病致病菌Xanthomonas axonopodis pv. citri(Xac)全菌免疫小鼠,提取小鼠脾细胞mRNA,RT-PCR扩增小鼠抗体重链可变区(VH)和轻链可变区(VL),采用linker (Gly4Ser)3连接VH和VL,构建用于核糖体展示方法筛选阳性单链抗体(scFvs)的文库。通过将scFv文库DNA转化大肠杆菌JM109,随机挑取克隆子测序以分析单链抗体文库的多样性。结果显示,用柑桔溃疡病菌免疫后的小鼠抗血清效价为2500倍左右,扩增的VH大小为350bp左右,VL的大小为650bp左右,linker连接后的单链抗体文库DNA大小为1200bp左右。测序结果显示,单链抗体文库多样性好。以Xac为靶,筛选到了抗Xac的特异性抗体,说明该抗体库可用于柑桔溃疡病菌单链抗体的筛选。  相似文献   

17.
Single-chain Fv antibodies (scFv), a group of reconstructed molecules with several disulfide bonds, are prone to aggregate as inclusion bodies, the insoluble species of natural proteins, when expressed in Escherichia coli, especially at high level. Recovery of functionally active products from inclusion bodies is onerous and ineffective. We have increased the soluble and functional scFv yields by fusing either DsbC or DsbG, two E. coli disulfide isomerases with general chaperone function, to scFvs. Compared to the totally insoluble inclusion bodies of scFvs expressed separately, more than half of each fusion protein DsbC-scFv or DsbG-scFv was soluble, according to SDS-PAGE analysis. The more effective solubility was obtained when the fused protein DsbG-scFv was co-expressed simultaneously with DsbC under the same promoter. Under this condition, the soluble portion of DsbG-scFv increased from about 50% to 90% measured by scanning SDS-PAGE gel. Co-expression of DsbC can change fusion protein CBD-scFv from totally insoluble when expressed in E. coli separately to a considerable portion of soluble CBD-scFv. Antigen-binding activity assay showed that scFvs retained full affinity to specific antigens. We also determined that general molecular chaperones GroEL and GroES had no effects on the solubility of scFvs when co-expressed with scFv in E. coli. We propose that the correct formation of disulfide bonds in scFvs is the crucial factor responsible for solubility of scFvs.  相似文献   

18.
HNK20 is a mouse monoclonal IgA that binds to the F glycoprotein of respiratory syncytial virus (RSV) and neutralizes the virus, both in vitro and in vivo. The single-chain antibody fragment (scFv) derived from HNK20 is equally active and has allowed us to assess rapidly the effect of mutations on affinity and antiviral activity. Humanization by variable domain resurfacing requires that surface residues not normally found in a human Fv be mutated to the expected human amino acid, thereby eliminating potentially immunogenic sites. We describe the construction and characterization of two humanized scFvs, hu7 and hu10, bearing 7 and 10 mutations, respectively. Both molecules show unaltered binding affinities to the RSV antigen (purified F protein) as determined by ELISA and surface plasmon resonance measurements of binding kinetics (Ka approximately 1x10(9) M-1). A competition ELISA using captured whole virus confirmed that the binding affinities of the parental scFv and also of hu7 and hu10 scFvs were identical. However, when compared with the original scFv, hu10 scFv was shown to have significantly decreased antiviral activity both in vitro and in a mouse model. Our observations suggest that binding of the scFv to the viral antigen is not sufficient for neutralization. We speculate that neutralization may involve the inhibition or induction of conformational changes in the bound antigen, thereby interfering with the F protein-mediated fusion of virus and cell membranes in the initial steps of infection.  相似文献   

19.
In this paper we report the development of a recombinant strain of the yeast Pichia pastoris, which secretes an anti-carcinoembryonic antigen single chain Fv (scFv) antibody fragment to the culture supernatant as a biologically active protein, at levels of 1.2 g l(-1). The yeast scFv was purified by IMAC, with a final yield of approximately 0.440 g of 93% pure scFv per liter of culture supernatant. The specific activity in ELISA of the yeast scFv was almost three times higher than that of a bacterial periplasmic counterpart. These results reaffirm that the yeast P. pastoris is a suitable host for high level production of scFv antibody fragments with potential in vivo diagnostic and therapeutic applications.  相似文献   

20.
Murine monoclonal antibodies to tumor-associated glycoprotein 72 (anti-TAG-72 mAb B72.3 and CC49) are among the most extensively studied mAb for immunotherapy of adenocarcinomas. They have been used clinically to localize primary and metastatic tumor sites; however, murine mAb generally induce potent human anti-(mouse antibody) responses. The immunogenicity of murine mAb can be minimized by genetic humanization of these antibodies, where non-human regions are replaced by the corresponding human sequences or complementary determining regions are grafted into the human framework regions. We have developed a humanized CC49 single-chain antibody construct (hu/muCC49 scFv) by replacing the murine CC49 variable light chain with the human subgroup IV germline variable light chain (Hum4 VL). The major advantages of scFv molecules are their excellent penetration into the tumor tissue, rapid clearance rate, and much lower exposure to normal organs, especially bone marrow, than occur with intact antibody. The biochemical properties of hu/muCC49 scFv were compared to those of the murine CC49 scFv (muCC49 scFv). The association constants (K a) for hu/muCC49 and muCC49 constructs were 1.1 × 106 M−1 and 1.4 × 106 M−1 respectively. Pharmacokinetic studies in mice showed similar rapid blood and whole-body clearance with a half-life of 6 min for both scFv. The biodistribution studies demonstrated equivalent tumor targeting to human colon carcinoma xenografts for muCC49 and hu/muCC49 scFv. These results indicate that the human variable light-chain subgroup IV can be used for the development of humanized or human immunoglobulin molecules potentially useful in both diagnostic and therapeutic applications with TAG-72-positive tumors. Received: 29 December 1999 / Accepted: 4 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号