首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fluorescence-based array biosensor targeted for field applications, such as environmental monitoring, has been developed, and successfully applied to DNA hybridization assays. The purpose was to meet the demand for automated, portable but easy-to-maintain systems allowing continuous flow monitoring of surface reactions. The biosensor presented here can be distinguished from the existing systems by the optical method used, which provides an enhanced simplicity and robustness, and enables a simple maintenance by potentially unskilled personnel. The system is based on a conventional microscope slide which acts both as transducer and biological array sensor. The excited fluorescence is guided by total internal reflection into the slide to the detector which is directly interfaced to the slide. Each region of the sensor array is successively optically interrogated, and the detection of the corresponding fluorescent emission synchronized. A real-time three-analyte analysis is thus feasible without any mechanical scanning movement or optical imaging systems as generally used in the existing instruments. The ability of the biosensor to operate in continuous flow for several tens of hours has been demonstrated. The biosensor has been assessed in terms of stability, and slide-to-slide reproducibility, which is found to be less than 3.7%, thus far below the standard biological reproducibility. DNA hybridization assays were performed to estimate a limit of detection, which was found to be 16 mol/microm(2), and to determine the reaction kinetics associated to the DNA model used. The developed biosensor is thus shown to be able to predict reaction kinetics, and to monitor in real time surface reactions between targets and probes.  相似文献   

2.
A biosensor for the measurement of glucose in serum has been developed, based on a screen-printed carbon electrode modified with Meldola’s Blue-Reinecke salt, coated with the enzyme glucose dehydrogenase (from Bacillus sp.), and nicotinamide adenine dinucleotide coenzyme (NAD+). A cellulose acetate layer was deposited on top of the device to act as a permselective membrane. The biosensor was incorporated into a commercially available, thin-layer, amperometric flow cell operated at a potential of only +0.05 V versus Ag/AgCl. The mobile phase consisted of 0.2 M phosphate buffer (pH 7.0) containing 0.1 M potassium chloride solution, and a flow rate of 0.8 ml min−1 was used throughout the investigation. The biosensor response was linear over the range of 0.075-30 mM glucose, with the former representing the detection limit. The precision of the system was determined by carrying out 20 repeat injections of a 5-mM glucose standard, and the calculated coefficient of variation was 3.9%. It was demonstrated that this biosensor system could be applied to the direct measurement of glucose in serum without pretreatment. Therefore, this would allow high-throughput analysis, at low cost, for this clinically important analyte.  相似文献   

3.
A screen-printed carbon electrode (SPCE) incorporating the electrocatalyst cobalt phthalocyanine (CoPC), fabricated using a water-based ink formulation, has been investigated as the base transducer for a uric acid biosensor. A sandwich biosensor was fabricated by first depositing cellulose acetate (CA) onto this transducer (CoPC-SPCE), followed by uricase (UOX) and finally a polycarbonate (PC) membrane; this device is designated PC-UOX-CA-CoPC-SPCE. This biosensor was used in conjunction with chronoamperometry to optimize the conditions for the analysis of urine: temperature, 35°C; buffer, pH 9.2; ionic strength, 50 mM; uricase, 0.6 U; incubation time, 180 s. The proposed biosensor was applied to urine from a healthy subject. The precision determined on unspiked urine (n=6) was 5.82%. Urine was fortified with 0.225 mM UA, and the resulting precision and recovery were 4.21 and 97.3%, respectively. The linear working range of the biosensor was found to be 0.015 to 0.25 mM (the former represents the detection limit), and the sensitivity was calculated to be 2.10 μA/mM.  相似文献   

4.
A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n = 11) were extracted from beef carcasses at 0 and 48 h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner–Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48 h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R2 = 0.6058). There was less variation in the 0 h capillary tube biosensor compared to the 0 h pre-column (P = 0.006) and post-column optical fiber biosensors (P = 0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.  相似文献   

5.
A biosensor system aimed at real-time measuring molecular interactions among label-free reactants has been used for a comparative analysis of the binding features (i.e., association-dissociation rates and affinity constants) as well as epitope mapping between bivalent monoclonal antibodies and the derived monovalent bispecific monoclonal antibody. The results show that observed different affinities between parental and derived bispecific antibodies concern the association rate constant, whereas the dissociation rate constants are unaltered. The apparent affinity-constant values determined by solid-phase radioimmunoassay yielded figures almost overlapping with those obtained with the biosensor instrument. The results of the present work indicate that the biosensor system has gained a key role not only as a tool for the study of antigen-antibody interactions, but also for setting up the reference parameters for the selection of the best candidates in the generation of bispecific monoclonal antibodies.  相似文献   

6.
A biosensor for detecting the toxicity of polycylic aromatic hydrocarbons (PAHs) contaminated soil has been successfully constructed using an immobilized recombinant bioluminescent bacterium, GC2 (lac::luxCDABE), which constitutively produces bioluminescence. The biosurfactant, rhamnolipids, was used to extract a model PAH, phenanthrene, and was found to enhance the bioavailability of phenanthrene via an increase in its rate of mass transfer from sorbed soil to the aqueous phase. The monitoring of phenanthrene toxicity was achieved through the measurement of the decrease in bioluminescence when a sample extracted with the biosurfactant was injected into the minibioreactor. The concentrations of phenanthrene in the aqueous phase were found to correlate well with the corresponding toxicity data obtained by using this toxicity biosensor. In addition, it was also found that the addition of glass beads to the agar media enhanced the stability of the immobilized cells. This biosensor system using a biosurfactant may be applied as an in-situ biosensor to detect the toxicity of hydrophobic contaminants in soils and for performance evaluation of PAH degradation in soils.  相似文献   

7.
A thick-film phosphate biosensor based on hydrogel immobilized pyruvate oxidase (POD) has been developed for rapid phosphate process control monitoring in an experimental sequencing batch reactor (SBR) system. We have employed a phosphate biosensor in an off-line monitoring of phosphate concentrations in a bench scale SBR. Measurements with biosensor show a good correlation (r2=0.98) with those of commercial colorimetric phosphate testing kits. The signal response time was 1 min with a detection limit of 5 microM. The biosensor method showed a good operational stability, needed less experimental procedures and a small sample size (approximately 20 microl). This allows its practical application for rapid phosphate measurements to obtain real time process data in a SBR system.  相似文献   

8.
An optical fiber biosensor for the determination of the pesticides propoxur (Baygon®) and carbaryl, two of the most commonly used carbamate insecticides in vegetable crops, is described. A pH indicator, chlorophenol red, is used as optical transducer of the inhibition of the enzyme acetylcholinesterase by the analytes. The biorecognition element is covalently immobilized onto controlled pore glass beads (CPG) and packed in a thermostatized bioreactor connected to a flow-through cell that contains CPG-immobilized chlorophenol red placed at the common end of a bifurcated fiber optic bundle. In the presence of a constant acetylcholine concentration, the colour of the pH sensitive layer changes and the measured reflectance signal can be related to the carbamate concentration in the sample solution. The performance of the biosensor has been optimized using a flow injection system. The linear dynamic range for the determination of carbaryl and propoxur spans from 0.8 to 3.0 mg l−1 and from 0.03 to 0.50 mg l−1, respectively. The detection limit (3 s) of the biosensor for propoxur (0.4 ng) is lower than that measured for carbaryl (25 ng). Reproducibility, stability and interference studies of the optical device are reported. The biosensor has been applied to the determination of propoxur in spiked vegetables (onion and lettuce) using ultrasound extraction, achieving recovery values between 93 and 95% for onion samples at the different concentration levels assayed.  相似文献   

9.
Summary The Exactech blood glucose biosensor has been used successfully to measure glucose concentrations in fermentation broths. A highly sensitive linear calibration was obtained between the glucose concentration and the biosensor reading, which correlated well with a Reducing Sugar Assay.  相似文献   

10.
A biosensor based on flow injection of the recognition element has been developed. As a model a pH-transducer was used, and urease was chosen as the recognition element. The pH-transducer was immersed in an internal flow-through chamber which was in contact with the sample solution via a semi-permeable membrane. The recognition element, urease, was injected into the buffer solution passing through the biosensor. The enzyme catalysed the hydrolysis of urea and the concomitant increase in pH was recorded. The biosensor response time was about three minutes at a constant flow rate of 0·05 ml/min. The linear range of the calibration curve of the biosensor was 0–5 mM. The observed detection limit was approximately 0.1 mM. The sample throughput was 6–12 per hour. The pH-response of the biosensor, for a sample solution containing urea (3·26 mM), showed a reproducibility (r.s.d) of 28% (n = 5) and a repeatability (r.s.d.) of 8% (n = 5). Operation at elevated temperatures (up to 50°C) was demonstrated. The presence of glucose (28 mM), acetone (6·7 mM), citric acid (0·2 mM) or sodium acetate (0·6 mM) in the sample solution did not interfere with the sensor response. A lowering of the biosensor response which was observed in the presence of copper ions (due to urease inhibition) could be completely eliminated by adding EDTA to the urease solution. Thus, this work demonstrates a new type of biosensors, based on SIRE-technology (Sensors with Injectable Recognition Elements), which show high accuracy and stability, quick response and high sample throughput. These features suggest the suitability of the system for automation. Such sensors should readily be combined with other enzymes or enzyme systems. The enzyme (urease) cost per analysis (injection) for the biosensor was estimated to be approximately US$0·02. This could be substantially reduced by further optimisation and miniaturisation.  相似文献   

11.
A bacterial biosensor based on flow injection analysis (FIA) has been developed for the determination of benzene in workplace air samples. Benzene can be used by the bacteria Pseudomonas putida ML2 as a sole carbon source, and its aerobic degradation can be measured using a dissolved oxygen electrode. The bacterial cells were immobilised between two cellulose acetate membranes and fixed onto a Clark dissolved oxygen probe, which was inserted into a custom-made flow cell. The applicability of the biosensor for the analysis of air samples containing benzene was investigated. Air samples were collected from a controlled exposure room using charcoal adsorption tubes, and benzene extracted with solvent desorption using dimethylformamide (DMF). The biosensor displayed a linear detection range between 0.025 and 0.15 mM benzene based on standard solutions containing a maximum of 2% DMF, with a response time of 6 min. This linear detection range allows the analysis of air containing between 3 and 16 ppm benzene based on a 60-min sampling period. DMF proved to be compatible for use with the biosensor, causing minimal interference with the sensor response and causing no toxic effects on the bacterial cells. The FIA system was easily transported to an in situ location, and a correlation was obtained between the biosensor and gas chromatography (GC) results for the preliminary air samples investigated. Moreover, the biosensor displayed no interference to other benzene related compounds in the BTEX range. The results from this work have shown that the biosensor has potential applications for the analysis of benzene in workplace air samples, with the added advantages over the conventional GC methods of low operation costs, ease of use, and portability for in situ measurements.  相似文献   

12.
A fluorescence-based biosensor has been developed for simultaneous analysis of multiple samples for multiple biohazardous agents. A patterned array of antibodies immobilized on the surface of a planar waveguide is used to capture antigen present in samples; bound analyte is then quantified by means of fluorescent tracer antibodies. Upon excitation of the fluorophore by a small diode laser, a CCD camera detects the pattern of fluorescent antibody:antigen complexes on the waveguide surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. This array biosensor has been used to detect toxins, toxoids, and killed or non-pathogenic (vaccine) strains of pathogenic bacteria. Limits of detection in the mid-ng/ml range (toxins and toxoids) and in the 10(3)-10(6) cfu/ml range (bacterial analytes) were achieved with a facile 14-min off-line assay. In addition, a fluidics and imaging system has been developed which allows automated detection of staphylococcal enterotoxin B (SEB) in the low ng/ml range.  相似文献   

13.
A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors.  相似文献   

14.
An amperometric biosensor array has been developed to resolve pesticide mixtures of dichlorvos and methylparaoxon. The biosensor array has been used in a Flow Injection system, in order to operate automatically the inhibition procedure. The sensors used were three screen-printed amperometric biosensors that incorporated three different acetylcholinesterase enzymes: the wild type from Electric eel and two different genetically modified enzymes, B1 and B394 mutants, from Drosophila melanogaster. The inhibition response triplet was modelled using an Artificial Neural Network which was trained with mixture solutions that contain dichlorvos from 10(-4) to 0.1 microM and methylparaoxon from 0.001 to 2.5 microM. This system can be considered an inhibition electronic tongue.  相似文献   

15.
3-Hydroxybutyrate, one of the main blood ketone bodies, has been considered as a critical indicator for diagnosis of diabetic ketoacidosis. Biosensors designed for detection of 3-hydroxybutyrate with advantages of precision, easiness and speedy performance have attracted increasing attention. This study attempted to develop a 3-hydroxybutyrate dehydrogenase-based biosensor in which single-walled carbon nanotubes (SWCNT) was used in order to immobilize the cofactor, NAD+, on the surface of screen-printed electrode. The formation of NAD+–SWCNT conjugates was assessed by electrochemistry and electron microscopy. Cyclic voltammetry was used to analyze the performance of this biosensor electrochemically. The considerable shelf life and reliability of the proposed biosensor to analyze real sample was confirmed by this method. The reduction in the over potential of electrochemical oxidation of NADH to ?0.15 V can be mentioned as a prominent feature of this biosensor. This biosensor can detect 3-hydroxybutyrate in the linear range of 0.01–0.1 mM with the low detection limit of 0.009 mM. Simultaneous application of screen-printed electrode and SWCNT has made the biosensor distinguished which can open new prospects for detection of other clinically significant metabolites.  相似文献   

16.
The hemoflavoenzyme cellobiose dehydrogenase (CDH, EC 1.1.99.18) from Phanerochaete chrysosporium has been used in an amperometric redox polymer-based biosensor. Used in conjugation with a FIA system this biosensor can replace colorimetric assays for measuring cellobiose liberated from cellulose in a series of cellulase-containing samples. The biosensor gave the same result as the Somogyi-Nelson method in a less time-consuming and laborious manner. The two methods showed about the same precision.  相似文献   

17.
A new 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone (CPO) derivative was utilized to develop an optical acetylcholinesterase (AChE) biosensor in which the azlactone derivative was embedded in plasticized polyvinylchloride (PVC) matrix. The sensor system was calibrated for the detection of acetylcholine (ACh) and donepezil which is a competitive cholinesterase (ChE) inhibitor. Two different biosensing systems were developed by using AChE enzyme in solution and immobilized together with the fluorescent derivative (CPO) doped in transparent PVC membrane. The enzymatic hydrolysis of ACh was monitored by following changes in the pH induced fluorescence intensity. When AChE enzyme was immobilized in PVC matrix together with CPO, the sensitivity of the measuring system has increased approximately three times for ACh, in comparison to the sensing system where AChE enzyme was in solution phase.

The photophysical parameters of CPO were also examined in solvents of tetrahydrofuran (THF), acetonitrile (ACN) and dichloromethane (DCM) and in solid matrix of PVC. The azlactone derivative exhibits excellent photostability in PVC matrix.  相似文献   


18.
19.
Although surface plasmon resonance (SPR) biosensor technique has been used to study protein-protein interactions and to detect conformational changes of proteins, it has not been shown whether the SPR biosensor can be used to study a complex kinetic system such as the protein-DNA binding, which sometimes involves several binding steps as well as dynamic conformational changes of the complexes. In this study, we have used SPR biosensor and T7 polymerase as the model system to study the interactions of the polymerase with a series of DNA template-primer duplexes containing different number of mismatches and GC contents at various positions near the primer 3'-end. In general, the binding constants measured by the SPR are several magnitudes smaller than those determined in solution, indicating the limitation of the surface-based technique for measuring solution-based interactions. However, the distinct polymerase binding profiles obtained for DNA duplexes differed by as low as a single mismatch suggest that the SPR data can be used for relative comparison purpose among a set of experiments carried out under identical conditions. The successful fitting of the binding profiles using the established translocation model also demonstrated that SPR can be used to monitor conformational changes, as well as to derive relative kinetic values, within a complicated DNA-protein interaction system. The results also demonstrated that SPR biosensor may be used as a sensitive technique for studying molecular recognition events, such as single-base discrimination involved in protein-DNA interactions.  相似文献   

20.
A quartz crystal microbalance (QCM) biosensor system for lectin-carbohydrate interactions has been developed. Yeast mannan was immobilised on polystyrene-coated quartz crystals, and interactions tested with the lectin concanavalin A (Con A). The biosensor could be easily operated, where mannan immobilisation and all binding analyses were performed in real-time using a flow-through system. The apparent binding constant for yeast mannan to Con A was estimated to be 0.4 microM, well in accordance to reported literature values. In addition, the effective concentration values (EC50-values) for a series of mannose/mannoside ligands, acting as competitors to the mannan/Con A interaction, were determined to range from 0.18 to 5.3 mM, in good correlation with a related enzyme-labelled lectin assay (ELLA) protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号