首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this article, we introduce metabolite concentration coupling analysis (MCCA) to study conservation relationships for metabolite concentrations in genome-scale metabolic networks. The analysis allows the global identification of subsets of metabolites whose concentrations are always coupled within common conserved pools. Also, the minimal conserved pool identification (MCPI) procedure is developed for elucidating conserved pools for targeted metabolites without computing the entire basis conservation relationships. The approaches are demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. Despite significant differences in the size and complexity of the examined organism's models, we find that the concentrations of nearly all metabolites are coupled within a relatively small number of subsets. These correspond to the overall exchange of carbon molecules into and out of the networks, interconversion of energy and redox cofactors, and the transfer of nitrogen, sulfur, phosphate, coenzyme A, and acyl carrier protein moieties among metabolites. The presence of large conserved pools can be viewed as global biophysical barriers protecting cellular systems from stresses, maintaining coordinated interconversions between key metabolites, and providing an additional mode of global metabolic regulation. The developed approaches thus provide novel and versatile tools for elucidating coupling relationships between metabolite concentrations with implications in biotechnological and medical applications.  相似文献   

2.
Precision mapping of the metabolome   总被引:6,自引:0,他引:6  
The global study of the structure and dynamics of metabolic networks has been hindered by a lack of techniques that identify metabolites and their biochemical relationship in complex mixtures. The recent application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to metabolomic analysis suggests a way to tackle the problem. A lower-cost alternative to high-field FTICR-MS, the Orbitrap mass analyzer, promises accelerated activity in this area. Here, we show how the ultra-high mass accuracy and resolution provided by this new generation of mass spectrometers can help to identify metabolites and connect them into metabolic networks. Data from perturbation studies and isotope-tracking experiments can complement this information to create metabolic maps de novo and chart unexplored areas of metabolism.  相似文献   

3.
Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of causes of disease. At the core of both fields is the measurement of fluxes. This issue of Metabolic Engineering highlights important topics: mammalian metabolic physiology where estimating fluxes is challenging. The challenges come from compartmentation of metabolites, from dilution of tracer by endogenous pools, and from the difficulty of sampling relevant pools. The common theme across these investigations is the use of isotopic tracers. The wide variety of tracers and tracer analysis techniques in use in mammalian metabolic physiology reflects the complexity of the systems under study. In presenting these examples from the field of mammalian metabolic physiology, our goal is to strengthen the linkages between physiologists and engineers as we develop our knowledge and appreciation of the complexity of metabolic networks.  相似文献   

4.
5.
6.
Recent development of high-throughput analytical techniques has made it possible to qualitatively identify a number of metabolites simultaneously. Correlation and multivariate analyses such as principal component analysis have been widely used to analyse those data and evaluate correlations among the metabolic profiles. However, these analyses cannot simultaneously carry out identification of metabolic reaction networks and prediction of dynamic behaviour of metabolites in the networks. The present study, therefore, proposes a new approach consisting of a combination of statistical technique and mathematical modelling approach to identify and predict a probable metabolic reaction network from time-series data of metabolite concentrations and simultaneously construct its mathematical model. Firstly, regression functions are fitted to experimental data by the locally estimated scatter plot smoothing method. Secondly, the fitted result is analysed by the bivariate Granger causality test to determine which metabolites cause the change in other metabolite concentrations and remove less related metabolites. Thirdly, S-system equations are formed by using the remaining metabolites within the framework of biochemical systems theory. Finally, parameters including rate constants and kinetic orders are estimated by the Levenberg–Marquardt algorithm. The estimation is iterated by setting insignificant kinetic orders at zero, i.e., removing insignificant metabolites. Consequently, a reaction network structure is identified and its mathematical model is obtained. Our approach is validated using a generic inhibition and activation model and its practical application is tested using a simplified model of the glycolysis of Lactococcus lactis MG1363, for which actual time-series data of metabolite concentrations are available. The results indicate the usefulness of our approach and suggest a probable pathway for the production of lactate and acetate. The results also indicate that the approach pinpoints a probable strong inhibition of lactate on the glycolysis pathway.  相似文献   

7.
Baxter CJ  Liu JL  Fernie AR  Sweetlove LJ 《Phytochemistry》2007,68(16-18):2313-2319
Estimation of fluxes through metabolic networks from redistribution patterns of (13)C has become a well developed technique in recent years. However, the approach is currently limited to systems at metabolic steady-state; dynamic changes in metabolic fluxes cannot be assessed. This is a major impediment to understanding the behaviour of metabolic networks, because steady-state is not always experimentally achievable and a great deal of information about the control hierarchy of the network can be derived from the analysis of flux dynamics. To address this issue, we have developed a method for estimating non-steady-state fluxes based on the mass-balance of mass isotopomers. This approach allows multiple mass-balance equations to be written for the change in labelling of a given metabolite pool and thereby permits over-determination of fluxes. We demonstrate how linear regression methods can be used to estimate non-steady-state fluxes from these mass balance equations. The approach can be used to calculate fluxes from both mass isotopomer and positional isotopomer labelling information and thus has general applicability to data generated from common spectrometry- or NMR-based analytical platforms. The approach is applied to a GC-MS time-series dataset of (13)C-labelling of metabolites in a heterotrophic Arabidopsis cell suspension culture. Threonine biosynthesis is used to demonstrate that non-steady-state fluxes can be successfully estimated from such data while organic acid metabolism is used to highlight some common issues that can complicate flux estimation. These include multiple pools of the same metabolite that label at different rates and carbon skeleton rearrangements.  相似文献   

8.
A major challenge in systems biology is to understand how complex and highly connected metabolic networks are organized. The structure of these networks is investigated here by identifying sets of metabolites that have a similar biosynthetic potential. We measure the biosynthetic potential of a particular compound by determining all metabolites than can be produced from it and, following a terminology introduced previously, call this set the scope of the compound. To identify groups of compounds with similar scopes, we apply a hierarchical clustering method. We find that compounds within the same cluster often display similar chemical structures and appear in the same metabolic pathway. For each cluster we define a consensus scope by determining a set of metabolites that is most similar to all scopes within the cluster. This allows for a generalization from scopes of single compounds to scopes of a chemical family. We observe that most of the resulting consensus scopes overlap or are fully contained in others, revealing a hierarchical ordering of metabolites according to their biosynthetic potential. Our investigations show that this hierarchy is not only determined by the chemical complexity of the metabolites, but also strongly by their biological function. As a general tendency, metabolites which are necessary for essential cellular processes exhibit a larger biosynthetic potential than those involved in secondary metabolism. A central result is that chemically very similar substances with different biological functions may differ significantly in their biosynthetic potentials. Our studies provide an important step towards understanding fundamental design principles of metabolic networks determined by the structural and functional complexity of metabolites.  相似文献   

9.
The study of dynamic functions of large-scale biological networks has intensified in recent years. A critical component in developing an understanding of such dynamics involves the study of their hierarchical organization. We investigate the temporal hierarchy in biochemical reaction networks focusing on: (1) the elucidation of the existence of "pools" (i.e., aggregate variables) formed from component concentrations and (2) the determination of their composition and interactions over different time scales. To date the identification of such pools without prior knowledge of their composition has been a challenge. A new approach is developed for the algorithmic identification of pool formation using correlations between elements of the modal matrix that correspond to a pair of concentrations and how such correlations form over the hierarchy of time scales. The analysis elucidates a temporal hierarchy of events that range from chemical equilibration events to the formation of physiologically meaningful pools, culminating in a network-scale (dynamic) structure-(physiological) function relationship. This method is validated on a model of human red blood cell metabolism and further applied to kinetic models of yeast glycolysis and human folate metabolism, enabling the simplification of these models. The understanding of temporal hierarchy and the formation of dynamic aggregates on different time scales is foundational to the study of network dynamics and has relevance in multiple areas ranging from bacterial strain design and metabolic engineering to the understanding of disease processes in humans.  相似文献   

10.
Metabolomics: quantification of intracellular metabolite dynamics   总被引:1,自引:0,他引:1  
The rational improvement of microbial strains for the production of primary and secondary metabolites ('metabolic engineering') requires a quantitative understanding of microbial metabolism. A process by which this information can be derived from dynamic fermentation experiments is presented. By applying a substrate pulse to a substrate-limited, steady state culture, cellular metabolism is shifted away from its metabolic steady state. With the aid of a rapid sampling and quenching routine it is possible to take 4-5 samples per second during this process, thus capturing the metabolic response to this stimulus. Over 30 metabolites, nucleotides and cofactors from Escherichia coli metabolism can be extracted and analysed using a range of different techniques, for example enzymatic assays, HPLC and LC-MS methods. Using different substrates as limiting and pulse-substrates (glucose, glycerol), different metabolic pathways and substrate uptake systems are investigated. The resulting plots of intracellular metabolite concentrations against time serve as a data basis for modelling microbial metabolic networks.  相似文献   

11.
A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non-growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model-based optimization of the cell culture for MAb production in both batch and fed-batch systems.  相似文献   

12.
Metabolomics embraces several strategies that aim to quantify cell metabolites in order to increase our understanding of how metabolite levels and interactions influence phenotypes. Metabolic footprinting represents a niche within metabolomics, because it focuses on the analysis of extracellular metabolites. Although metabolic footprinting represents only a fraction of the entire metabolome, it provides important information for functional genomics and strain characterization, and it can also provide scientists with a key understanding of cell communication mechanisms, metabolic engineering and industrial biotechnological processes. Due to the tight and convoluted relationship between intracellular metabolism and metabolic footprinting, metabolic footprinting can provide precious information about the intracellular metabolic status. Hereby, we state that integrative information from metabolic footprinting can assist in further interpretation of metabolic networks.  相似文献   

13.
An algorithm is presented for the automatic detection of dynamic moiety pools within steady state metabolic subnetworks which may be embedded within larger dynamic networks. This is an aid in the quantitative development of the hierarchical structure of metabolic networks. The algorithm can also be used to test for the physical readability of a stoichiometric matrix of a closed metabolic network.  相似文献   

14.
Spinal cord injury (SCI) is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR) screening, we identified 15 metabolites that made up an “Eigen-metabolome” capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD–NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use.  相似文献   

15.
We describe a systematic approach to establish predictive models of CHO cell growth, cell metabolism and monoclonal antibody (mAb) formation during biopharmaceutical production. The prediction is based on a combination of an empirical metabolic model connecting extracellular metabolic fluxes with cellular growth and product formation with mixed Monod-inhibition type kinetics that we generalized to every possible external metabolite. We describe the maximum specific growth rate as a function of the integral viable cell density (IVCD). Moreover, we also take into account the accumulation of metabolites in intracellular pools that can influence cell growth. This is possible even without identification and quantification of these metabolites as illustrated with fed-batch cultures of Chinese Hamster Ovary (CHO) cells producing a mAb. The impact of cysteine and tryptophan on cell growth and cell productivity was assessed, and the resulting macroscopic model was successfully used to predict the impact of new, untested feeding strategies on cell growth and mAb production. This model combining piecewise linear relationships between metabolic rates, growth rate and production rate together with Monod-inhibition type models for cell growth did well in predicting cell culture performance in fed-batch cultures even outside the range of experimental data used for establishing the model. It could therefore also successfully be applied for in silico prediction of optimal operating conditions.  相似文献   

16.
17.
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.  相似文献   

18.

Background

Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network.

Methodology/Principal Findings

Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response.

Conclusions/Significance

Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches.  相似文献   

19.

Background

It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons.

Model

The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled.

Results

The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico.

Conclusion

The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.  相似文献   

20.
Genome-scale metabolic networks can be reconstructed. The systemic biochemical properties of these networks can now be studied. Here, genome-scale reconstructed metabolic networks were analysed using singular value decomposition (SVD). All the individual biochemical conversions contained in a reconstructed metabolic network are described by a stoichiometric matrix (S). SVD of S led to the definition of the underlying modes that characterize the overall biochemical conversions that take place in a network and rank-ordered their importance. The modes were shown to correspond to systemic biochemical reactions and they could be used to identify the groups and clusters of individual biochemical reactions that drive them. Comparative analysis of the Escherichia coli, Haemophilus influenzae, and Helicobacter pylori genome-scale metabolic networks showed that the four dominant modes in all three networks correspond to: (1) the conversion of ATP to ADP, (2) redox metabolism of NADP, (3) proton-motive force, and (4) inorganic phosphate metabolism. The sets of individual metabolic reactions deriving these systemic conversions, however, differed among the three organisms. Thus, we can now define systemic metabolic reactions, or eigen-reactions, for the study of systems biology of metabolism and have a basis for comparing the overall properties of genome-specific metabolic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号