首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

2.
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.  相似文献   

3.
Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2-/- Vav3-/- mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.  相似文献   

4.
The ADP ribosylation factors (Arfs) are a family of small, ubiquitously expressed and evolutionarily conserved guanosine triphosphatases that are key regulators of vesicular transport in eukaryotic cells (D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347-358). Although Arfs are best known for their role in the nucleation of coat protein assembly at a variety of intracellular locations, it is increasingly apparent that they are also integral components in a number of important signaling pathways that are regulated by extracellular cues. The activation of Arfs is catalyzed by a family of guanine nucleotide exchange factors (GEFs), referred to as the Sec7 family, based on homology of their catalytic domains to the yeast Arf GEF, sec7p. While there are only six mammalian Arfs, the human genome encodes 15 Sec7 family members, which can be divided into five classes based on related domain organization. Some of this diversity arises from the tissue-specific expression of certain isoforms, but all mammalian cells appear to express at least six Arf GEFs, suggesting that Arf activation is under extensive regulatory control. Here we review recent progress in our understanding of the structure, localization and biology of the different classes of Arf GEFs.  相似文献   

5.
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological- cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanisms for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.  相似文献   

6.
RasGRF is a family of guanine nucleotide exchange factors with dual specificity for both Ras and Rac GTPases. In this study, using mouse brain extracts, we show that both RasGRF1 and RasGRF2 interact with microtubules in an in vitro microtubule assembly system and this binding is very tight. To characterize this association, recombinant purified proteins containing different regions of RasGRF1 were tested for their ability to bind microtubules preassembled from pure tubulin. Only the DHPH2 tandem directly associates with microtubules, whereas the isolated DH or PH2 domains do not, indicating that the entire DHPH2 region is required for this association. The interaction occurs with high affinity (Kd approximately = 2 microM) and with a stoichiometry, at saturating conditions, of one DHPH2 molecule for two tubulin dimers. Competition experiments support the hypothesis that the DHPH2 module is largely responsible for RasGRF1-microtubule interaction. In vivo colocalization of RasGRF1 and microtubules was also observed by fluorescence confocal microscopy in nonneuronal cells after stimulation with an oxidative stress agent and in highly differentiated neuron-like cells. Identification of microtubules as new binding partners of RasGRF1 may help to elucidate the signaling network in which RasGRF1 is involved.  相似文献   

7.

Introduction  

Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS.  相似文献   

8.
9.
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.  相似文献   

10.
Lipid-laden macrophages or "foam cells" are the primary components of the fatty streak, the earliest atherosclerotic lesion. Although Vav family guanine nucleotide exchange factors impact processes highly relevant to atherogenesis and are involved in pathways common to scavenger receptor CD36 signaling, their role in CD36-dependent macrophage foam cell formation remains unknown. The goal of the present study was to determine the contribution of Vav proteins to CD36-dependent foam cell formation and to identify the mechanisms by which Vavs participate in the process. We found that CD36 contributes to activation of Vav-1, -2, and -3 in aortae from hyperlipidemic mice and that oxidatively modified LDL (oxLDL) induces activation of macrophage Vav in vitro in a CD36 and Src family kinase-dependent manner. CD36-dependent uptake of oxLDL in vitro and foam cell formation in vitro and in vivo was significantly reduced in Vav null macrophages. These studies for the first time link CD36 and Vavs in a signaling pathway required for macrophage foam cell formation.  相似文献   

11.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

12.
We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation.  相似文献   

13.
Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 beta2-beta3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.  相似文献   

14.
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.  相似文献   

15.
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins.  相似文献   

16.
The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a G(s)-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization.  相似文献   

17.
18.
Cotranslational protein transport to the endoplasmic reticulum is controlled by the concerted interaction of three GTPases: the SRP54 subunit of the signal recognition particle (SRP) and the alpha- and beta-subunits of the SRP receptor (SR). SRbeta is related to ADP-ribosylation factor (ARF)-type GTPases, and the recently published crystal structure of SRbeta-GTP in complex with the binding domain of SRalpha suggested that SRbeta, like all ARF-type GT-Pases, requires a guanine nucleotide exchange factor (GEF) for function. Searching the sequence data base, we identified significant sequence similarity between the Sec7 domain of ARF-GEFs and the cytosolic domains of the beta-subunits of the two homologous heterotrimeric protein-conducting channels in yeast. Using a fluorescence nucleotide exchange assay, we show that the beta-subunits of the heterotrimeric protein-conducting channels function as the GEFs for SRbeta. Both the cytosolic domain of Sec61beta as well as the holo-Sec61beta, when part of the isolated trimeric Sec61p complex, function as the GEF for SRbeta, whereas the same Sec61beta, when part of the heptameric complex that facilitates posttranslational protein transport, is inactive as the GEF for SRbeta  相似文献   

19.
Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.  相似文献   

20.
PDZ-GEF1 (RA-GEF/nRapGEP/CNrasGEF) is a guanine nucleotide exchange factor (GEF) characterised by the presence of a PSD-95/DlgA/ZO-1 (PDZ) domain, a Ras-association (RA) domain and a region related to a cyclic nucleotide binding domain (RCBD). These domains are in addition to a Ras exchange motif (REM) and GEF domain characteristic for GEFs for Ras-like small GTPases. PDZ-GEF1 efficiently exchanges nucleotides of both Rap1 and Rap2, but has also been implicated in mediating cAMP-induced Ras activation through binding of cAMP to the RCBD. Here we describe a new family member, PDZ-GEF2, of which we isolated two splice variants (PDZ-GEF2A and 2B). PDZ-GEF2 contains, in addition to the domains characteristic for PDZ-GEF1, a second, less conserved RCBD at the N-terminus. PDZ-GEF2 is also specific for both Rap1 and Rap2. We further investigated the possibility that PDZ-GEF2, like PDZ-GEF1, is a cAMP-responsive GEF for Ras. However, in contrast to previous results, we did not find any effect of either PDZ-GEF1 or PDZ-GEF2 on Ras in the absence or presence of cAMP. Moreover, affinity measurements by isothermic calorimetry showed that the RCBD of PDZ-GEF1 does not bind cAMP with a physiologically relevant affinity. We conclude that both PDZ-GEF1 and 2 are specific for Rap1 and Rap2 and unresponsive to cAMP and various other nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号