首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramos LS  Chen MH  Knox BE  Birge RR 《Biochemistry》2007,46(18):5330-5340
Xenopus violet cone opsin (VCOP) and its counterion variant (VCOP-D108A) are expressed in mammalian COS1 cells and regenerated with 11-cis-retinal. The phototransduction process in VCOP-D108A is investigated via cryogenic electronic spectroscopy, homology modeling, molecular dynamics, and molecular orbital theory. The VCOP-D108A variant is a UV-like pigment that displays less efficient photoactivation than the mouse short wavelength sensitive visual pigment (MUV) and photobleaching properties that are significantly different. Theoretical calculations trace the difference to the protonation state of the nearby glutamic acid residue E176, which is the homology equivalent of E181 in rhodopsin. We find that E176 is negatively charged in MUV but neutral (protonated) in VCOP-D108A. In the dark state, VCOP-D108A has an unprotonated Schiff base (SB) chromophore (lambdamax = 357 nm). Photolysis of VCOP-D108A at 70 K generates a bathochromic photostationary state (lambdamax = 380 nm). We identify two lumi intermediates, wherein the transitions from batho to the lumi intermediates are temperature- and pH-dependent. The batho intermediate decays to a more red-shifted intermediate called lumi I. The SB becomes protonated during the lumi I to lumi II transition. Decay of lumi II forms meta I, followed by the formation of meta II. We conclude that even in the absence of a primary counterion in VCOP-D108A, the SB becomes protonated during the photoactivation cascade. We examine the relevance of this observation to the counterion switch mechanism of visual pigment activation.  相似文献   

2.
The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum.  相似文献   

3.
B W Vought  A Dukkipatti  M Max  B E Knox  R R Birge 《Biochemistry》1999,38(35):11287-11297
Two short-wavelength cone opsins, frog (Xenopus laevis) violet and mouse UV, were expressed in mammalian COS1 cells, purified in delipidated form, and studied using cryogenic UV-vis spectrophotometry. At room temperature, the X. laevis violet opsin has an absorption maximum at 426 nm when generated with 11-cis-retinal and an absorption maximum of 415 nm when generated with 9-cis-retinal. The frog short-wavelength opsin has two different batho intermediates, one stable at 30 K (lambda(max) approximately 446 nm) and the other at 70 K (lambda(max) approximately 475 nm). Chloride ions do not affect the absorption maximum of the violet opsin. At room temperature, mouse UV opsin has an absorption maximum of 357 nm, while at 70 K, the pigment exhibits a bathochromic shift to 403 nm with distinct vibronic structure and a strong secondary vibronic band at 380 nm. We have observed linear relationships when analyzing the energy difference between the initial and bathochromic intermediates and the normalized difference spectra of the batho-shifted intermediates of rod and cone opsins. We conclude that the binding sites of these pigments change from red to green to violet via systematic shifts in the position of the primary counterion relative to the protonated Schiff base. The mouse UV cone opsin does not fit this trend, and we conclude that wavelength selection in this pigment must operate via a different molecular mechanism. We discuss the possibility that the mouse UV chromophore is initially unprotonated.  相似文献   

4.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

5.
K R Babu  A Dukkipati  R R Birge  B E Knox 《Biochemistry》2001,40(46):13760-13766
Short-wavelength visual pigments (SWS1) have lambda(max) values that range from the ultraviolet to the blue. Like all visual pigments, this class has an 11-cis-retinal chromophore attached through a Schiff base linkage to a lysine residue of opsin apoprotein. We have characterized a series of site-specific mutants at a conserved acidic residue in transmembrane helix 3 in the Xenopus short-wavelength sensitive cone opsin (VCOP, lambda(max) approximately 427 nm). We report the identification of D108 as the counterion to the protonated retinylidene Schiff base. This residue regulates the pK(a) of the Schiff base and, neutralizing this charge, converts the violet sensitive pigment into one that absorbs maximally in the ultraviolet region. Changes to this position cause the pigment to exhibit two chromophore absorbance bands, a major band with a lambda(max) of approximately 352-372 nm and a minor, broad shoulder centered around 480 nm. The behavior of these two absorbance bands suggests that these represent unprotonated and protonated Schiff base forms of the pigment. The D108A mutant does not activate bovine rod transducin in the dark but has a significantly prolonged lifetime of the active MetaII state. The data suggest that in short-wavelength sensitive cone visual pigments, the counterion is necessary for the characteristic rapid production and decay of the active MetaII state.  相似文献   

6.
The photochemical and subsequent thermal reactions of 7-cis-rhodopsin prepared from cattle opsin and 7-cis-retinal were investigated by low-temperature spectrophotometry and laser photolysis, and compared with those of 11-cis-rhodopsin prepared from cattle opsin and 11-cis-retinal. Low-temperature experiments revealed that the absorption maxima of batho and lumi intermediates from 7-cis-rhodopsin were at slightly shorter wavelengths than those of 11-cis-rhodopsin while the meta I intermediates of both rhodopsin isomers showed the same absorption maxima. Kinetic experiments of the photobleaching process of 7-cis-rhodopsin using picosecond and nanosecond laser pulses revealed the formation of intermediates corresponding to the batho, lumi, meta I, and meta II intermediates from 11-cis-rhodopsin. An intermediate of 7-cis-rhodopsin corresponding to photorhodopsin (a precursor of bathorhodopsin), however, was not detected. Batho and lumi intermediates from 7-cis-rhodopsin had shorter lifetimes (approximately 40 ns and 300 microseconds) than those of 11-cis-rhodopsin (250 ns and 800 microseconds), but the lifetime of the meta I intermediate from 7-cis-rhodopsin was identical with that from 11-cis-rhodopsin (12 ms). These results indicate that the difference in configuration of the original chromophore between 7-cis- and 11-cis-rhodopsins is a cause of different chromophore-opsin interactions in the batho and lumi stages, while in the meta I stage the difference has disappeared by the relaxation of the protein near the chromophores. A possible interaction change between the 9-methyl group of the chromophore and its neighboring protein during the lumi-meta I transition will be discussed.  相似文献   

7.
The nop-1 gene from Neurospora crassa is predicted to encode a seven-helix protein exhibiting conservation with the rhodopsins of the archaeon Halobacterium salinarum. In the work presented here we have expressed this gene heterologously in the yeast Pichia pastoris, obtaining a relatively high yield of 2.2 mg of NOP-1 protein/L of cell culture. The expressed protein is membrane-associated and forms with all-trans retinal a visible light-absorbing pigment with a 534 nm absorption maximum and approximately 100 nm half-bandwidth typical of retinylidene protein absorption spectra. Its lambda(max) indicates a protonated Schiff base linkage of the retinal. Laser flash kinetic spectroscopy demonstrates that the retinal-reconstituted pigment undergoes a photochemical reaction cycle with a near-UV-absorbing intermediate that is similar to the M intermediates produced by transient Schiff base deprotonation of the chromophore in the photocycles of bacteriorhodopsin and sensory rhodopsins I and II. The slow photocycle (seconds) and long-lived intermediates (M and O) are most similar to those of the phototaxis receptor sensory rhodopsin II. The results demonstrate a photochemically reactive member of the archaeal rhodopsin family in a eukaryotic cell.  相似文献   

8.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.  相似文献   

9.
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; lambda(max) = 550 nm) in which isomerization around the critical C13==C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (lambda(max) = 450 nm) and H430 (lambda(max) = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.  相似文献   

10.
C Longstaff  R R Rando 《Biochemistry》1987,26(19):6107-6113
Bacteriorhodopsin (bR) in purple membranes was permethylated with formaldehyde and pyridine-borane with the incorporation of approximately 12 methyl groups. This new pigment, PMbR, absorbed light in the dark-adapted state with a lambda max at 558 nm, virtually the same as that of bR. Light adaptation of PMbR produced a lambda max of 564 nm with a slightly elevated epsilon. Similar changes occurred with bR. When incorporated into asolectin vesicles, PMbR was able to pump protons in the light with an efficiency similar to that of bR itself. Bleaching of PMbR exposed its active site lysine residue, which was monomethylated to form active site methylated bR (AMbR) after regeneration with all-trans-retinal. This blue pigment, which is a cyanopsin rather than a rhodopsin, showed an extraordinary red shift, absorbing light with a lambda max of 620 nm in the dark-adapted state. Light adaptation of AMbR resulted in a spectral shift to 616 nm with a decrease in epsilon. This change was completely reversible in the dark. This shift was interpreted to mean that an L-like intermediate was accumulating, as would be expected if deprotonation of the protonated Schiff base could not occur to produce the M intermediate. Furthermore, when incorporated into asolectin vesicles, AMbR proved incapable of pumping protons in the light. It was concluded from these experiments that deprotonation of the Schiff base of bR is obligate for light-induced proton pumping.  相似文献   

11.
A Dukkipati  B W Vought  D Singh  R R Birge  B E Knox 《Biochemistry》2001,40(50):15098-15108
Short-wavelength cone visual pigments (SWS1) are responsible for detecting light from 350 to 430 nm. Models of this class of pigment suggest that TM2 has extensive contacts with the retinal binding pocket and stabilizes interhelical interactions. The role of TM2 in the structure-function of the Xenopus SWS1 (VCOP, lambda(max) = 427 nm) pigment was studied by replacement of the helix with that of bovine rhodopsin and also by mutagenesis of highly conserved residues. The TM2 chimera and G78D, F79L, M81E, P88T, V89S, and F90V mutants did not produce any significant spectral shift of the dark state or their primary photointermediate formed upon illumination at cryogenic temperatures. The mutant G77R (responsible for human tritanopia) was completely defective in folding, while C82A and F87T bound retinal at reduced levels. The position S85 was crucial for obtaining the appropriate spectroscopic properties of VCOP. S85A and S85T did not bind retinal. S85D bound retinal and had a wild-type dark state at room temperature and a red-shifted dark state at 45 K and formed an altered primary photointermediate. S85C absorbed maximally at 390 nm at neutral pH and at 365 nm at pH >7.5. The S85C dark state was red shifted by 20 nm at 45 K and formed an altered primary photointermediate. These data suggest that S85 is involved in a hydrogen bond with the protonated retinylidene Schiff base counterion in both the dark state and the primary photointermediate.  相似文献   

12.
9-cis-Retro-gamma-rhodopsin (lambda max = 420 nm) was prepared from 9-cis-retro-gamma-retinal and cattle opsin. After cooling to liquid nitrogen temperature (77 K), the pigment was irradiated with light at 380 nm. The spectrum shifted to the longer wavelengths, owing to formation of a batho product. This fact indicates that the conjugated double bond system from C-5 to C-8 of the chromophoric retinal in rhodopsin was not necessary for formation of bathorhodopsin. Reirradiation of the batho product with light at wavelengths longer than 520 nm yielded a mixture composed of presumably 9- or 11-cis forms of retro-gamma-rhodopsin. These three isomers are interconvertible by light at liquid nitrogen temperature. Thus the retro-gamma-rhodopsin system is similar in photochemical reaction at 77 K to cattle rhodopsin system. Each system has its own batho product. Based on these results, it was infered that the formation of batho-rhodopsin is due to photoisomerization of the chromophoric retinal of rhodopsin and is not due to translocation of a proton on the ring or on the side chain from C-6 to C-8 of the chromophoric retinal to the Schiff-base nitrogen.  相似文献   

13.
Opsin readily undergoes Schiff base formation between an active site lysine and 9-cis- or 11-cis-retinaldehyde to form the visual pigments isorhodopsin (lambda max = 487 nm) and rhodopsin (lambda max = 500 nm), respectively (Dratz, 1977). It would be predicted that 9-cis-retinoyl fluoride (1), an isostere of 9-cis-retinal, should be an active site directed, mechanism-based labeling agent of opsin, since a stable peptide bond should be formed instead of a Schiff base. It is shown here that 9-cis-retinoyl fluoride (1) reacts with opsin in a time-dependent fashion (t1/2 = 9 min at 25 microM 1) to form a new, nonbleachable pigment with a lambda max of approximately 365 nm. beta-Ionone competitively slows down the rate of the reaction. The absorbance of the new pigment at approximately 365 nm is similar to that of model amide compounds. This result is consistent in a general and qualitative way with the Nakanishi-Honig point-charge model for visual pigments which requires that the chromophore be charged, a situation not possible when the retinoid is linked to opsin via a peptide bond rather than a protonated Schiff base [Honig, B., Dinur, U., Nakanishi, K., Balogh-Nair, V., Gawinowicz, M.A., Arnabaldi, M., & Motto, M.G. (1979) J. Am. Chem. Soc. 101, 7084-7086]. 9-cis-Retinoyl fluoride (1) is approximately 4-fold more potent than all-trans-retinoyl fluoride (2) as an inactivator of bovine opsin. Importantly, 13-cis-retinoyl fluoride (3) is inactive, and no new absorption band at 365 nm is observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Chicken pineal pinopsin is the first example of extra-retinal opsins, but little is known about its molecular properties as compared with retinal rod and cone opsins. For characterization of extra-retinal photon signaling, we have developed an overexpression system providing a sufficient amount of purified pinopsin. The recombinant pinopsin, together with similarly prepared chicken rhodopsin and green-sensitive cone pigment, was subjected to photochemical and biochemical analyses by using low-temperature spectroscopy and the transducin activation assay. At liquid nitrogen temperature (-196 degrees C), we detected two kinds of photoproducts, bathopinopsin and isopinopsin, having their absorption maxima (lambda(max)) at 527 and approximately 440 nm, respectively, and we observed complete photoreversibility among pinopsin, bathopinopsin, and isopinopsin. A close parallel of the photoreversibility to the rhodopsin system strongly suggests that light absorbed by pinopsin triggers the initial event of cis-trans isomerization of the 11-cis-retinylidene chromophore. Upon warming, bathopinopsin decayed through a series of photobleaching intermediates: lumipinopsin (lambda(max) 461 nm), metapinopsin I (460 nm), metapinopsin II (385 nm), and metapinopsin III (460 nm). Biochemical and kinetic analyses showed that metapinopsin II is a physiologically important photoproduct activating transducin. Detailed kinetic analyses revealed that the formation of metapinopsin II is as fast as that of a chicken cone pigment, green, but that the decay process of metapinopsin II is as slow as that of the rod pigment, rhodopsin. These results indicate that pinopsin is a new type of pigment with a chimeric nature between rod and cone visual pigments in terms of the thermal behaviors of the meta II intermediate. Such a long-lived active state of pinopsin may play a role in the pineal-specific phototransduction process.  相似文献   

15.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

16.
Proteorhodopsin (PR), found in marine gamma-proteobacteria, is a newly discovered light-driven proton pump similar to bacteriorhodopsin (BR). Because of the widespread distribution of proteobacteria in the worldwide oceanic waters, this pigment may contribute significantly to the global solar energy input in the biosphere. We examined structural changes that occur during the primary photoreaction (PR --> K) of wild-type pigment and two mutants using low-temperature FTIR difference spectroscopy. Several vibrations detected in the 3500-3700 cm(-1) region are assigned on the basis of H(2)O --> H(2)(18)O exchange to the perturbation of one or more internal water molecules. Substitution of the negatively charged Schiff base counterion, Asp97, with the neutral asparagine caused a downshift of the ethylenic (C=C) and Schiff base (C=N) stretching modes, in agreement with the 27 nm red shift of the visible lambda(max). However, this replacement did not alter the normal all-trans to 13-cis isomerization of the chromophore or the environment of the detected water molecule(s). In contrast, substitution of Asn230, which is in a position to interact with the Schiff base, with Ala induces a 5 nm red shift of the visible lambda(max) and alters the PR chromophore structure, its isomerization to K, and the environment of the detected internal water molecules. The combination of FTIR and site-directed mutagenesis establishes that both Asp97 and Asn230 are perturbed during the primary phototransition. The environment of Asn230 is further altered during the thermal decay of K. These results suggest that significant differences exist in the conformational changes which occur in the photoactive sites of proteorhodopsin and bacteriorhodopsin during the primary photoreaction.  相似文献   

17.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

18.
The published electron microscope and X-ray structures of rhodopsin have made available a detailed picture of the inactive dark state of rhodopsin. Yet, the photointermediates of rhodopsin that ultimately lead to the activated receptor species still await a similar analysis. Such an analysis first requires the generation and characterization of the photoproducts that can be obtained in crystals of rhodopsin. We therefore studied with Fourier-transform infrared (FTIR) difference spectroscopy the photoproducts in 2D crystals of bovine rhodopsin in a p22(1)2(1) crystal form. The spectra obtained by cryotrapping revealed that in this crystal form the still inactive early intermediates batho, lumi, and meta I are similar to those obtained from rhodopsin in native disk membranes, although the transition from lumi to meta I is shifted to a higher temperature. However, at room temperature, the formation of the active state, meta II, is blocked in the crystalline environment. Instead, an intermediate state is formed that bears some features of meta II but lacks the specific conformational changes required for activity. Despite being unable to activate its cognate G protein, transducin, to a significant extent, this intermediate state is capable of interacting with functional transducin-derived peptides to a limited extent. Therefore, while unable to support formation of rhodopsin's active state meta II, 2D p22(1)2(1) crystals proved to be very suitable for determining 3D structures of its still inactive precursors, batho, lumi, and meta I. In future studies, FTIR spectroscopy may serve as a sensitive assay to screen crystals grown under altered conditions for potential formation of the active state, meta II.  相似文献   

19.
Kandori H  Belenky M  Herzfeld J 《Biochemistry》2002,41(19):6026-6031
Light-driven proton transport in bacteriorhodopsin (BR) is initiated by photoisomerization of the retinylidene chromophore, which perturbs the hydrogen bonding network in the Schiff base region of the active site. This study aimed to identify the frequency and dipolar orientation of the N-D stretching vibrations of the Schiff base before and after photoisomerization, by means of low-temperature polarized FTIR spectroscopy of [zeta-(15)N]lysine-labeled BR in D(2)O. (15)N-shifted modes were found at 2123 and 2173 cm(-1) for BR, and at 2468 and 2495 cm(-1) for the K intermediate. The corresponding N-H stretches are at approximately 2800 cm(-1) for BR and 3350-3310 cm(-1) for the K intermediate. The shift to a 350 cm(-1) higher frequency upon photoisomerization is consistent with loss of the hydrogen bond of the Schiff base. The N-D stretch frequencies of the Schiff base in BR and the K intermediate are close to the O-D stretch frequencies of strongly hydrogen bonded water and Thr89, respectively. The angles of the dipole moments of the N-D stretches to the membrane normal were determined to be 60-65 degrees for BR and approximately 90 degrees for the K intermediate. In the case of BR, the stretch orientation is expected to deviate from the N-D bond orientation due to vibrational mixing in the hydrogen bonding network. In contrast, the data for the K intermediate suggest that the N-D group is not hydrogen bonded and orients along the membrane.  相似文献   

20.
Mooney VL  Szundi I  Lewis JW  Yan EC  Kliger DS 《Biochemistry》2012,51(12):2630-2637
Molecular structure and function studies of vertebrate ultraviolet (UV) cone visual pigments are needed to understand the molecular evolution of these photoreceptors, which uniquely contain unprotonated Schiff base linkages between the 11-cis-retinal chromophore and the opsin proteins. In this study, the Siberian hamster ultraviolet cone pigment (SHUV) was expressed and purified in an n-dodecyl-β-D-maltoside suspension for optical characterization. Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were taken for the purified pigment at time delays from 30 ns to 4.64 s after photoexcitation using 7 ns pulses of 355 nm light. The resulting data were fit globally to a sum of exponential functions after noise reduction using singular-value decomposition. Four exponentials best fit the data with lifetimes of 1.4 μs, 210 μs, 47 ms, and 1 s. The first photointermediate species characterized here is an equilibrated mixture similar to the one formed after rhodopsin's Batho intermediate decays into equilibrium with its successor, BSI. The extremely large red shift of the SHUV Batho component relative to the pigment suggests that SHUV Batho has a protonated Schiff base and that the SHUV cone pigment itself has an unprotonated Schiff base. In contrast to SHUV Batho, the portion of the equilibrated mixture's spectrum corresponding to SHUV BSI is well fit by a model spectrum with an unprotonated Schiff base. The spectra of the next two photointermediate species revealed that they both have unprotonated Schiff bases and suggest they are analogous to rhodopsin's Lumi I and Lumi II species. After decay of SHUV Lumi II, the correspondence with rhodopsin photointermediates breaks down and the next photointermediate, presumably including the G protein-activating species, is a mixture of protonated and unprotonated Schiff base photointermediate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号