首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial methylation processes in sediment are an important source of toxic monomethylmercury (MMHg) to aquatic ecosystems. Although bioturbation activities (feeding, digging of galleries, excavations, bioirrigation) by benthic fauna are known to affect many biogeochemical processes, their influence on benthic MMHg production is poorly understood. We investigated the effect of benthic fauna on the microbial production of MMHg in sediments on the continental shelf of the northwest Atlantic Ocean in September 2009. Replicate cores of sieved (control) and unaltered sediment containing native macrofauna were incubated to examine the influence of benthic macrofauna on net MMHg production, potential gross rates of Hg methylation, sediment reworking, dissolved oxygen and organic carbon concentrations, and microbial metabolic activities. The presence of macrofauna stimulated aerobic microbial respiration and net MMHg production, but had no observed effect on short-term gross rates of Hg methylation. This suggests that bioturbation may promote net MMHg production by inhibiting demethylating microorganisms, although overall community metabolism was increased. Results from this work emphasize the need to enhance our knowledge and understanding of the interactions among benthic fauna, microorganisms, and geochemistry in affecting MMHg production.  相似文献   

2.
海洋沉积物是地球上最大的有机碳库,其中生存的微生物总量大、分布范围广、类群多样、代谢方式复杂,并共同构成海洋沉积物微生物组。海洋沉积物微生物组介导的有机碳降解与矿化过程不但能为沉积物中的生命活动提供物质和能量,也能参与调控碳循环过程,并在长时间尺度上对地球气候系统产生重大影响。沉积物中的有机碳在复杂多样的微生物代谢活动下被逐步降解,其最终的矿化过程与不同的电子受体消耗相偶合,并形成对应的地球化学分区。研究海洋沉积物微生物及其介导的有机碳转化过程对我们深入认识沉积物中的元素循环过程,并进一步评估其对整个地球系统的影响具有重要科学意义。本文对海洋沉积物微生物组的体量、包含的微生物多样性、代谢活性以及在不同地球化学分区中主要的微生物类群和代谢机制进行综述,最后基于研究现状展望了海洋沉积物微生物组的未来研究方向。  相似文献   

3.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   

4.
Reductive dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was investigated in anaerobic sediments by non-adapted microorganisms and by microorganisms adapted to either 2,4- or 3,4-dichlorophenol (DCP). The rate of dechlorination of 2,4-D was increased by adaptation of sediment microorganisms to 2,4-DCP while dechlorination by sediment microorganisms adapted to 3,4-DCP displayed a lag phase similar to non-adapted sediment slurries. Both 2,4- and 3,4-DCP-adapted microorganisms produced 4-chlorophenoxyacetic acid by ortho-chlorine removal. Lag phases prior to dechlorination of the initial addition of 2,4,5-T by DCP-adapted sediment microorganisms were comparable to those from non-adapted sediment slurries. However, the rates of dechlorination increased upon subsequent additions of 2,4,5-T. Biodegradation of 2,4,5-T by sediment microorganisms adapted to 2,4- and/ or 3,4-DCP produced 2,5-D as the initial intermediate followed by 3-chlorophenol and phenol indicating a para > ortho > meta order of dechlorination. Dechlorination of 2,4,5-T, by either adapted or non-adapted sediment microorganisms, progressed without detection of 2,4,5-trichlorophenol as an intermediate.  相似文献   

5.
By modifying the physical environment, ecosystem engineers can have inordinately large effects on surrounding communities and ecosystem functioning. However, the significance of engineering in ecosystems greatly depends on the physical characteristics of the engineered habitats. Mechanisms underlying such context‐dependent impact of engineers remain poorly understood even though they are crucial to establish general predictions concerning the contribution of engineers to ecosystem structure and function. The present study aimed to decrypt such mechanisms by determining how the environmental context modulates the effects of ecosystem engineers (bioturbators) on microorganisms in river sediments. To test the effects of environmental context on the role of bioturbators in sediments, we used mesocosms and recreated two sedimentary contexts in the laboratory by adding a layer of either fine or coarse sand at the top of a gravel‐sand matrix. For each sediment context, we examined how the sediment reworking activity of a bioturbating tubificid worm (Tubifex tubifex) generated changes in the physical (sediment structure and permeability) and abiotic environments (hydraulic discharge, water chemistry) of microorganisms. Microbial characteristics (abundances, activities) and leaf litter decomposition – a major microbially‐mediated ecological process – were measured to evaluate the impact of bioturbation on biotic compartment. Our results showed that the permeability, the availability of oxygen and the activities of microorganisms were reduced in sediments covered with fine sand, in comparison with sediments covered with coarse sand. Tubifex tubifex significantly increased permeability (by about six‐fold), restored aerobic conditions and ultimately stimulated microbial communities (resulting in a 30% increase in leaf litter breakdown rate) in sediments covered with fine sand. In contrast T. tubifex had low effects in sediments topped by coarse sand, where O2 was already available for hyporheic microorganisms. Our study supports the idea that context dependency mainly modulates the effects of engineering by controlling the ability of engineers to create changes on abiotic (O2 in the present study) factors that are limiting for surrounding communities.  相似文献   

6.
Currently there are very few researches on studying the vertical changes of metabolic and thermodynamic properties of microbial communities in freshwater lake sediment. In this work, a multi-channel microcalorimetric system was applied to investigate both the metabolism and thermodynamic properties of 0–35 cm sediment cores from Lake Honghu (Jingzhou, Hubei Province, China). It is suggested that the catastrophic flood in 1998 had changed the structure of the 20–25 cm sediment layer. In this layer, both the physicochemical properties of sediment and the thermodynamic activities of microorganisms exhibit distinct differences from other layers. It displays the highest TOC, TN and C/N values. The power-time curves of microcalorimetric measurement on the sediment samples were plotted to illustrate their microbial activities. The 20–25 cm sediment layer showed the lowest microbial activities with a maximum heat flow rate of 56.97 μW, a growth rate constant of 0.06 h ?1 and the time to reach the peak was 98 h. A positive correlation (r= 0.972, P< 0.001) was found between the cell specific metabolic enthalpy change rate (ΔH0 ) and the TOC of the sediment samples. ΔH0 could indicate the utilization efficiency of carbon source which is not affected by the biomass but relies on the intrinsic properties of sediment. Our work shows that the higher the TOC in sediment; the lower the efficiency in assimilating carbon into biomass by the microbes.  相似文献   

7.
The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water–sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L−1 at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.  相似文献   

8.
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a ‘halo effect’, can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services.  相似文献   

9.
代梨梨  彭亮  陶玲  郝柳柳  张辉  李谷 《微生物学报》2023,63(10):3811-3824
硫酸盐引起的生态学效应已得到了越来越多的关注,但目前关于硫酸盐对养殖池塘底泥微生物的影响还知之甚少。【目的】探究不同浓度硫酸盐对养殖池塘底泥微生物的影响规律及可能的机制。【方法】本研究利用采集自养殖池塘的底泥和表层水构建了试验系统,研究了加入约0 mg/L (对照组)、30 mg/L (T1处理组)、150 mg/L (T2处理组)、500 mg/L (T3处理组) Na2SO4后表层底泥微生物的丰度、多样性、组成和共生网络的变化规律,并分析了环境影响因素。【结果】孵育第30天前,各实验组底泥微生物变化不大;但到第50天时,T2和T3处理组微生物丰度和多样性相比对照组均明显下降。相比其他实验组,T1处理组酸杆菌门(Acidobacteriota)、拟杆菌门(Bacteroidota)相对丰度出现显著升高(P<0.05),T3处理组变形菌门(Proteobacteria)和放线菌门(Actinobacteriota)相对丰度出现显著升高(P<0.05)。与对照组相比,T1处理组增加了较多差异类群(62种),而T3处理组差异类群大量减少(45种)。共生网络图分析显示硫酸盐浓度的增加引起了底泥微生物网络复杂性的增加,说明微生物群落可能通过自身的调节来响应硫酸盐引起的环境改变。冗余分析(redundant analysis,RDA)和相关性分析揭示底泥总有机碳、总氮和氧化还原电位是影响底泥微生物的主要环境因素,提示底泥微生物可能受到硫酸盐和有机质作用的影响。【结论】较长时间的高浓度硫酸盐会对池塘底泥微生物群落造成重要影响,微生物群落自身的转变和硫酸盐引起的有机质分解改变可能是造成微生物群落变化的关键因素。  相似文献   

10.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

11.
Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.  相似文献   

12.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C2-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C′1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

13.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C(2)-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C'1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

14.
Estuarine sediment slurries and microorganisms were examined for the ability to methylate inorganic tin. Under controlled redox conditions, tin was methylated only in oxygen-free sediment slurries. Monomethyltin usually comprised greater than 90% of the alkyltin products formed, although dimethyltin was also produced. Autoclaved anoxic sediments did not produce organotins. Several bacterial cultures, most notably sulfate-reducing bacteria isolated from anoxic estuarine sediments, formed monoand dimethyltin from inorganic tin in the absence of sediment. The results suggest that inorganic tin methylation in estuarine environments is an anaerobic process catalyzed primarily by sulfate-reducing microorganisms.  相似文献   

15.
The fate of uranium in natural systems is of great environmental importance. X-ray absorption near-edge spectroscopy (XANES) revealed that U(VI) was reduced to U(IV) in shallow freshwater sediment at an open pit in an inactive uranium mine. Geochemical characterization of the sediment showed that nitrate, Fe(III), and sulfate had also been reduced in the sediment. Observations of the sediment particles and microbial cells by scanning and transmission electron microscopy, coupled with elemental analysis by energy dispersive spectroscopy, revealed that uranium was concentrated at microbial cell surfaces. U(IV) was not associated with framboidal pyrite or nanometer-scale iron sulfides, which are presumed to be of microbial origin. Uranium concentrations were not detected in association with algal cells. Phylogenetic analyses of microbial populations in the sediment by the use of 16S rRNA and dissimilatory sulfite reductase gene sequences detected organisms belonging to the families Geobacteraceae and Desulfovibrionaceae. Cultivated members of these lineages reduce U(VI) and precipitate iron sulfides. The association of uranium with cells, but not with sulfide surfaces, suggests that U(VI) is reduced by the enzymatic activities of microorganisms. Uranium was highly enriched (760 ppm) in a subsurface black layer in unsaturated sediment sampled from a pit which was exposed to seasonal fluctuations in the pond level. XANES analysis showed that the majority of uranium in this layer was U(IV), indicating that uranium is preserved in its reduced form after burial.  相似文献   

16.
Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages'' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment''s origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments.  相似文献   

17.
Members of the genus Pseudomonas are important phytopathogens and agents of human infections, while other strains and species exhibit bioremediation and biocontrol activities. Species-specific detection of Pseudomonas species in the environment may help to gain a more complete understanding of the ecological significance of these microorganisms. The objective of present study was comparative analysis of biochemically and PCR based confirmed 10 isolates of Pseudomonas aeruginosa (6 from fish intestine and 4 from pond sediment). PCR-ribotyping and PAGE revealed that there was extensive heterogeneity at the genetic and protein levels. Both genetic and phenotypic heterogeneity were more in the sediment isolates compared to the fish isolates. SDS-PAGE clearly demonstrated the differences between fish and sediment isolates as evident from the higher range of protein profiling. In antibiotic sentivity test no habitat specific antibiogram was obtained. Zinc adversely affected the DNA of all the isolates to be amplified by PCR as DNA banding pattern was different from normal DNA in stressed DNA. Thus stress, particularly, zinc may interfere monitoring of Pseudomonas by PCR.  相似文献   

18.
The fate of uranium in natural systems is of great environmental importance. X-ray absorption near-edge spectroscopy (XANES) revealed that U(VI) was reduced to U(IV) in shallow freshwater sediment at an open pit in an inactive uranium mine. Geochemical characterization of the sediment showed that nitrate, Fe(III), and sulfate had also been reduced in the sediment. Observations of the sediment particles and microbial cells by scanning and transmission electron microscopy, coupled with elemental analysis by energy dispersive spectroscopy, revealed that uranium was concentrated at microbial cell surfaces. U(IV) was not associated with framboidal pyrite or nanometer-scale iron sulfides, which are presumed to be of microbial origin. Uranium concentrations were not detected in association with algal cells. Phylogenetic analyses of microbial populations in the sediment by the use of 16S rRNA and dissimilatory sulfite reductase gene sequences detected organisms belonging to the families Geobacteraceae and Desulfovibrionaceae. Cultivated members of these lineages reduce U(VI) and precipitate iron sulfides. The association of uranium with cells, but not with sulfide surfaces, suggests that U(VI) is reduced by the enzymatic activities of microorganisms. Uranium was highly enriched (760 ppm) in a subsurface black layer in unsaturated sediment sampled from a pit which was exposed to seasonal fluctuations in the pond level. XANES analysis showed that the majority of uranium in this layer was U(IV), indicating that uranium is preserved in its reduced form after burial.  相似文献   

19.
The regularities of lytic microorganisms distribution in domestic sewage have been studied. A reproduction of mesophilic gram-negative bacteria producing lytic substances against Pseudomonas aeruginosa and Staphylococcus aureus has been shown to take place at mechanical cleaning stages. In the primary sediment trap the number and the relative content of microorganisms lysing P. aeruginosa at mean temperature and the number of microorganisms lysing S. aureus are maximum. The number of gram-positive sporogenous bacteria lysing P. aeruginosa under conditions close to thermophilic does not change considerably till the secondary sediment trap and remains comparatively high. Certain stages of purification can be regarded as a source of microorganisms producing lytic substances.  相似文献   

20.
Methods for cultivation of microorganisms oxidizing iron and manganese in bottom sediments of Lake Baikal were tested. Bacteria were grown on selective media with a characteristic accumulation of metal oxides. The morphology and developmental patterns of the isolated microbial group were studied. The studied sediment core was used to isolate 42 strains of bacteria oxidizing iron and manganese. The cultivated bacteria were confined to the upper sediment layers (down to 11 cm) and their abundance depended on sediment type and redox conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号