首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Sequencing of environmental DNA (often called metagenomics) has shown tremendous potential to uncover the vast number of unknown microbes that cannot be cultured and sequenced by traditional methods. Because the output from metagenomic sequencing is a large set of reads of unknown origin, clustering reads together that were sequenced from the same species is a crucial analysis step. Many effective approaches to this task rely on sequenced genomes in public databases, but these genomes are a highly biased sample that is not necessarily representative of environments interesting to many metagenomics projects.  相似文献   

2.
Interpolated Markov models for eukaryotic gene finding.   总被引:21,自引:0,他引:21  
Computational gene finding research has emphasized the development of gene finders for bacterial and human DNA. This has left genome projects for some small eukaryotes without a system that addresses their needs. This paper reports on a new system, GlimmerM, that was developed to find genes in the malaria parasite Plasmodium falciparum. Because the gene density in P. falciparum is relatively high, the system design was based on a successful bacterial gene finder, Glimmer. The system was augmented with specially trained modules to find splice sites and was trained on all available data from the P. falciparum genome. Although a precise evaluation of its accuracy is impossible at this time, laboratory tests (using RT-PCR) on a small selection of predicted genes confirmed all of those predictions. With the rapid progress in sequencing the genome of P. falciparum, the availability of this new gene finder will greatly facilitate the annotation process.  相似文献   

3.
HMMGEP: clustering gene expression data using hidden Markov models   总被引:3,自引:0,他引:3  
SUMMARY: The package HMMGEP performs cluster analysis on gene expression data using hidden Markov models. AVAILABILITY: HMMGEP, including the source code, documentation and sample data files, is available at http://www.bioinfo.tsinghua.edu.cn:8080/~rich/hmmgep_download/index.html.  相似文献   

4.
5.
6.
Disease gene identification by using graph kernels and Markov random fields   总被引:1,自引:0,他引:1  
Genes associated with similar diseases are often functionally related. This principle is largely supported by many biological data sources, such as disease phenotype similarities, protein complexes, protein-protein interactions, pathways and gene expression profiles. Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases. To capture the gene-disease associations based on biological networks, a kernel-based MRF method is proposed by combining graph kernels and the Markov random field (MRF) method. In the proposed method, three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks, respectively, and a novel weighted MRF method is developed to integrate those data. In addition, an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method. Numerical experiments are carried out by integrating known gene-disease associations, protein complexes, protein-protein interactions, pathways and gene expression profiles. The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm, achieving an AUC score of 0.771 when integrating all those biological data in our experiments, which indicates that our proposed method is very promising compared with many existing methods.  相似文献   

7.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

8.
9.
 Transitions between distinct kinetic states of an ion channel are described by a Markov process. Hidden Markov models (HMM) have been successfully applied in the analysis of single ion channel recordings with a small signal-to-noise ratio. However, we have recently shown that the anti-aliasing low-pass filter misleads parameter estimation. Here, we show for the case of a Na+ channel recording that the standard HMM do neither allow parameter estimation nor a correct identification of the gating scheme. In particular, the number of closed and open states is determined incorrectly, whereas a modified HMM considering the anti-aliasing filter (moving-average filtered HMM) is able to reproduce the characteristic properties of the time series and to perform gating scheme identification. Received: 11 February 1999 / Revised version: 18 June 1999 / Accepted: 21 June 1999  相似文献   

10.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

11.
12.
13.
MOTIVATION: Hidden Markov models (HMMs) calculate the probability that a sequence was generated by a given model. Log-odds scoring provides a context for evaluating this probability, by considering it in relation to a null hypothesis. We have found that using a reverse-sequence null model effectively removes biases owing to sequence length and composition and reduces the number of false positives in a database search. Any scoring system is an arbitrary measure of the quality of database matches. Significance estimates of scores are essential, because they eliminate model- and method-dependent scaling factors, and because they quantify the importance of each match. Accurate computation of the significance of reverse-sequence null model scores presents a problem, because the scores do not fit the extreme-value (Gumbel) distribution commonly used to estimate HMM scores' significance. RESULTS: To get a better estimate of the significance of reverse-sequence null model scores, we derive a theoretical distribution based on the assumption of a Gumbel distribution for raw HMM scores and compare estimates based on this and other distribution families. We derive estimation methods for the parameters of the distributions based on maximum likelihood and on moment matching (least-squares fit for Student's t-distribution). We evaluate the modeled distributions of scores, based on how well they fit the tail of the observed distribution for data not used in the fitting and on the effects of the improved E-values on our HMM-based fold-recognition methods. The theoretical distribution provides some improvement in fitting the tail and in providing fewer false positives in the fold-recognition test. An ad hoc distribution based on assuming a stretched exponential tail does an even better job. The use of Student's t to model the distribution fits well in the middle of the distribution, but provides too heavy a tail. The moment-matching methods fit the tails better than maximum-likelihood methods. AVAILABILITY: Information on obtaining the SAM program suite (free for academic use), as well as a server interface, is available at http://www.soe.ucsc.edu/research/compbio/sam.html and the open-source random sequence generator with varying compositional biases is available at http://www.soe.ucsc.edu/research/compbio/gen_sequence  相似文献   

14.
This study proposes to compare the outputs from the CARAIB vegetation model forced by results from the LMD General Circulation Model with interpolated pollen data (Kriging method) from the Mediterranean region during the Messinian. The vegetation maps that have been obtained represent distinct phases of the salinity crisis: before the crisis and during the marginal evaporitic phase (interpolated map), and during the complete desiccation phase (simulated map). However, they are comparable in terms of vegetation density and agree on a strong contrast between the Northern (forest vegetation) and Southern (open vegetation) Mediterranean regions. Main differences concern the type of forests in the northern Mediterranean region, which are explained by discrepancies between precipitation amount predicted by the model and that calculated by a transfer function using pollen records. The interpolation method has been successfully tested in France using interpolated current pollen records by comparison with the present-day potential vegetation map. The resulting Messinian map is useful to validate or improve model simulation which does not take into account the depth of the Mediterranean Basin when it dried up. The Southern Mediterranean landscapes were open, with a steppe-like vegetation to the West and a savannah-like vegetation to the East. Forests prevailed to the North, organized in a mosaic system mainly controlled by relief. Such a contrast provides some explanation of the large number of deep fluvial canyons cut on the Northern margin at opposed to the South during the Mediterranean desiccation.  相似文献   

15.
16.
Segmentation of yeast DNA using hidden Markov models   总被引:2,自引:0,他引:2  
  相似文献   

17.

Background  

Identifying large gene regulatory networks is an important task, while the acquisition of data through perturbation experiments (e.g., gene switches, RNAi, heterozygotes) is expensive. It is thus desirable to use an identification method that effectively incorporates available prior knowledge – such as sparse connectivity – and that allows to design experiments such that maximal information is gained from each one.  相似文献   

18.
We present here the use of a new statistical segmentation method on the Bacillus subtilis chromosome sequence. Maximum likelihood parameter estimation of a hidden Markov model, based on the expectation-maximization algorithm, enables one to segment the DNA sequence according to its local composition. This approach is not based on sliding windows; it enables different compositional classes to be separated without prior knowledge of their content, size and localization. We compared these compositional classes, obtained from the sequence, with the annotated DNA physical map, sequence homologies and repeat regions. The first heterogeneity revealed discriminates between the two coding strands and the non-coding regions. Other main heterogeneities arise; some are related to horizontal gene transfer, some to t-enriched composition of hydrophobic protein coding strands, and others to the codon usage fitness of highly expressed genes. Concerning potential and established gene transfers, we found 9 of the 10 known prophages, plus 14 new regions of atypical composition. Some of them are surrounded by repeats, most of their genes have unknown function or possess homology to genes involved in secondary catabolism, metal and antibiotic resistance. Surprisingly, we notice that all of these detected regions are a + t-richer than the host genome, raising the question of their remote sources.  相似文献   

19.
Microbial identification   总被引:2,自引:0,他引:2  
  相似文献   

20.
Hidden Markov models (HMMs) have been successfully applied to a variety of problems in molecular biology, ranging from alignment problems to gene finding and annotation. Alignment problems can be solved with pair HMMs, while gene finding programs rely on generalized HMMs in order to model exon lengths. In this paper, we introduce the generalized pair HMM (GPHMM), which is an extension of both pair and generalized HMMs. We show how GPHMMs, in conjunction with approximate alignments, can be used for cross-species gene finding and describe applications to DNA-cDNA and DNA-protein alignment. GPHMMs provide a unifying and probabilistically sound theory for modeling these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号