首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The traditional conception of the chemical pathways leading to the formation of the steroid hormones is derived by piecing together the results of several independent in vitro incubation experiments. The results of these experiments have led to the assumption that some relevant cytochrome P-450's (P-450scc, P-450arom, P-450aldo, etc.) are “polyfunctional” and catalyze several successive hydroxylation reactions, which lead to the formation of the hormonal products. This essay offers an alternative view. It advances the suggestion that the oxygenated intermediates in the relevant biosynthetic conversions are reactive species that are formed by addition of both atoms of dioxygen onto two neighboring carbon atoms of steroidal precursors. Space-filled Stuart molecular models, generated by a computer program, suggest that the oxidized intermediates resemble hydroperoxides or cyclic peroxides (1,2-dioxanes). For the aromatization process required for estrogen biosynthesis, the atoms of dioxygen are bonded to C-2 and C-19 of the C19-precursor. For aldosterone formation, dioxygen is bonded to C-11 and C-18 of an appropriate precursor. Moreover, the results obtained from a computer program that provides information about “molecular mechanics” (bond angles and bond distances as well as total potential energies for each conformation of a molecule) suggest that consideration be given to the possibility that cortisol also can be biosynthesized by P-450-activated dioxygen addition to C-11 and C-17 of an appropriate precursor. Neither the traditional view of steroidogenic pathways nor the suggestions advanced here have been established by compelling experimental findings. Both hypotheses are saddled with untested assumptions, which are necessary because the dynamic processes can only be discerned by indirect means.

The origins of some naturally occurring steroids hydroxylated at C-17, C-18 and C-19 are examined in the light of the suggestions made in this essay.  相似文献   


2.
Electron transfer to rat liver microsomal cytochrome P-450 of 14 alpha-methyl group demethylation of 24,25-dihydrolanosterol (C30-sterol) has been studied with a new radio-high-performance liquid chromatography assay. The monooxygenase is dependent upon NADPH plus oxygen, insensitive to CN-, and sensitive to CO. Microsomal oxidation is also sensitive to trypsin digestion, and reactivation is dependent upon the addition of purified, detergent-solubilized cytochrome P-450 reductase. Electron transport of C-32 sterol demethylation can be fully supported by very low concentrations of NADPH (approximately 10 microM) only in the presence of saturating concentrations of NADH (approximately 200 microM) suggesting involvement of cytochrome b5-dependent electron transfer in addition to the NADPH-supported pathway. The cytochrome P-450 of 14 alpha-demethylation has been solubilized with detergents, resolved chromatographically from cytochrome P-450 reductase and cytochrome b5, and fully active C-32 demethylase reconstituted. Incubation of intact microsomes with NADH and very low concentrations of NADPH described above leads to interruption of demethylation without 14 alpha-methyl group elimination. Under these conditions, C-32 oxidation products of the C30-sterol substrate accumulate at the expense of formation of demethylated, C29-sterol products. This enzymic interruption of C-32 demethylation, accumulation of oxygenated C30-sterols, along with subsequent demethylation of the isolated C30-oxysterols under similar oxidative conditions supports the suggestion that 14 alpha-hydroxymethyl and aldehydic sterols are metabolic intermediates of sterol 14 alpha-demethylation. Only very modest inductions of the constitutive cytochrome P-450 isozyme of 14 alpha-methyl sterol oxidase can be obtained with just 2 out of 12 known, potent inducers of mammalian hepatic cytochrome P-450s. Alternatively, administration of complete adjuvant in mineral oil drastically reduces amounts of total microsomal cytochrome P-450 while activity of 14 alpha-methyl sterol oxidase is not affected dramatically. Thus, as much as 2.5-fold enhancement of C-32 oxidase specific activity is obtained when expressed per unit of cytochrome P-450.  相似文献   

3.
Cytochrome P-450scc as isolated is a cholesterol-depleted low-spin haemoprotein; addition of cholesterol results in formation of a high-spin complex. Cytochrome P-450scc--cholesterol is a one-electron acceptor on titration with NADPH. Cytochrome P-450scc--cholesterol can be anaerobically reduced to the ferrous state which, on oxygenation, forms an oxygenated cytochrome P-450scc--cholesterol complex. This oxygenated complex in the absence of adrenodoxin autoxidises to ferric cytochrome P-450scc--cholesterol without oxidation of cholesterol. The decay of the oxygenated complex is first-order, k = 9.3 X 10(-3) S-1 at 4 degrees C. The rate of autoxidation is influenced by pH, ionic strength and the chemical nature of bound sterol. The activation energy of autoxidation is 75 kJ mol-1. Addition of equimolar amounts of adrenodoxin to cytochrome P-450scc--cholesterol followed by stoichiometric reduction under anaerobic conditions and subsequent oxygenation, allows single catalytic turnover cycles of cytochrome P-450scc to be observed. This has led to detection of intermediates in the conversion of cholesterol to pregnenolone and a precursor/product sequence of cholesterol----22-hydroxycholesterol----20,22-dihydroxy-cholesterol ----pregnenolone has been established. Addition of oxidised adrenodoxin to oxygenated cytochrome P-450scc--cholesterol results in formation of 22-hydroxycholesterol.  相似文献   

4.
To further elucidate the mechanisms by which ACTH (adrenocorticotropin) exerts its long-term action to maintain normal levels of adrenocortical cytochromes P-450 and related enzymes, the abilities of cholera toxin and prostaglandins E2 and F2 alpha to induce the synthesis of cytochromes P-450scc, P-45011 beta, and P-450C21 and adrenodoxin have been examined. These effectors stimulate the production of cyclic AMP and thus steroidogenesis in the adrenal cortex. Using bovine adrenocortical cells in primary monolayer culture, we have shown that treatment with cholera toxin results in increased synthesis of cytochromes P-450scc and P-45011 beta and adrenodoxin, similar to the effect observed upon ACTH treatment. Prostaglandins E2 and F2 alpha are less effective at inducing the synthesis of the mitochondrial cytochromes P-450, and do not seem to induce the synthesis of adrenodoxin. Furthermore, cholera toxin was found to be less effective at inducing the synthesis of microsomal cytochrome P-450C21 than ACTH, and no more effective than the prostaglandins. Thus, while it appears that elevation of cyclic AMP levels is a necessary step leading to increased synthesis of adrenocortical forms of cytochrome P-450, the detailed mechanism of this induction will be found to be different for each of the different enzymes.  相似文献   

5.
Cytochrome P-45011beta has been solubilized and partially purified from bovine adrenal cortex mitochondria by means of chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but had a low specific content of P-450 (between 1 and 2 nmol of P-450 per mg of protein). In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11beta-hydroxylation of unconjugated and sulfoconjugated deoxycorticosterone. In the reconstituted system the hydroxylation of deoxycorticosterone sulfate proceeded at a much higher rate than in intact mitochondria, indicating that in the former case interactions between the hydrophilic substrate and P-450 were facilitated. In the presence of Triton X-100 the partially purified cytochrome P-45011beta had a Stokes radius of 4.5 nm, a sedimentation coefficient of 3.1 S, and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011beta . Triton X-100 complex had a molecular weight of about 100,000 and that P-45011beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011beta . Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011beta is the active form of the protein.  相似文献   

6.
Electron paramagnetic resonance studies have been carried out on two species of cytochrome P-450 (P-450scc and P-45011beta) purified from bovine adrenocortical mitochondria. The g values of the steroid-bound cytochromes in the high spin form were determined at 4.2 degrees K to be 8.07, 3.60 and 1.70 for P-450scc and 8.00, 3.65 and 1.71 for P-45011beta. The E/D values were estimated to be 0.103 for P-450scc and 0.099 for P-45011beta. Either high spin P-450 was converted into the low spin form by the treatment with an NADPH dependent electron donating system and subsequent gel filtration in order to remove the steroid. The g values of the low spin ferric cytochromes were 2.423, 2.247 and 1.914 for P-450scc and 2.430, 2.251 and 1.919 for P-45011beta at 77 degrees K. The values for magnitude of delta/gamma, magnitude of V/gamma and k were 5.69, 5.21 and 1.11 for P-450scc and 5.94, 5.38 and 1.16 for P-45011beta. These studies indicate that there are some differences in the ferric heme environment between P-450scc and P-45011beta.  相似文献   

7.
Bovine adrenal P-45011 beta catalyzes the 11 beta- and 18-hydroxylation of corticosteroids as well as aldosterone synthesis. These activities of P-45011 beta were found to be modulated by another mitochondrial cytochrome P-450 species, P-450scc. The presence together of P-45011 beta and P-450scc in liposomal membranes was found to remarkably stimulate the 11 beta-hydroxylase activity of P-45011 beta and also stimulate the cholesterol desmolase activity of P-450scc. The stimulative effect of P-450scc on 11 beta-hydroxylase activity diminished by the addition of protein-free liposomes to proteoliposomes containing P-45011 beta and P-450scc, thus showing P-450scc to interact with P-45011 beta in the same membranes. Kinetic analysis of this effect indicated the formation of an equimolar complex between P-45011 beta and P-450scc on liposomal membranes. P-45011 beta in the complex had not only stimulated activity for 11 beta- and 18-hydroxylation of 11-deoxycorticosterone but also suppressed activity for production of 18-hydroxycorticosterone and aldosterone. When the inner mitochondrial membranes of zona fasciculata-reticularis from bovine adrenal were treated with anti-P-450scc IgG, aldosterone formation was stimulated to a greater extent than that of zona glomerulosa. This indicates the aldosterone synthesizing activity of P-45011 beta in the zona fasciculata-reticularis to be suppressed by interaction with P-450scc. The zone-specific aldosterone synthesis of P-45011 beta in bovine adrenal may possibly be induced by differences in interactions with P-450scc of mitochondrial membranes in each zone.  相似文献   

8.
Cytochrome P-45011 beta has been solubilized and partially purified from bovine adrenal cortex mitochondria using chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by SDS-polyacrylamide gel electrophoresis. In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11 beta-hydroxylation of unconjugated and sulphoconjugated deoxycorticosterone. In presence of Triton X-100 the partially purified cytochrome P-45011 beta had a Stoke's radius of 4.5 nm, a sedimentation coefficient of 3.1 S and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011 beta-Triton X-100 complex has a molecular weight of about 100 000 and that P-45011 beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011 beta-Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011 beta is an active form of the protein.  相似文献   

9.
In mammals, hydrocortisone synthesis from cholesterol is catalyzed by a set of five specialized enzymes, four of them belonging to the superfamily of cytochrome P-450 monooxygenases. A recombinant yeast expression system was recently developed for the CYP11B1 (P45011beta) enzyme, which performs the 11beta hydroxylation of steroids such as 11-deoxycortisol into hydrocortisone, one of the three mitochondrial cytochrome P-450 proteins involved in steroidogenesis in mammals. This heterologous system was used to test the potential interaction between CYP11B1 and CYP11A1 (P450scc), the mitochondrial cytochrome P-450 enzyme responsible for the side chain cleaving of cholesterol. Recombinant CYP11B1 and CYP11A1 were targeted to Saccharomyces cerevisiae mitochondria using the yeast cytochrome oxidase subunit 6 mitochondrial presequence fused to the mature form of the two proteins. In yeast, the presence of CYP11A1 appears to improve 11beta hydroxylase activity of CYP11B1 in vivo and in vitro. Fractionation experiments indicate the presence of the two proteins in the same membrane fractions, i.e. inner membrane and contact sites of mitochondria. Thus, yeast mitochondria provide interesting insights to study some molecular and cellular aspects of mammalian steroid synthesis. In particular, recombinant yeast should permit a better understanding of the mechanism permitting the synthesis of steroids (sex steroids, mineralocorticoids and glucocorticoids) with a minimal set of enzymes at physiological level, thus avoiding disease states.  相似文献   

10.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

11.
The effects of cytochrome b5 on the decay of the ferrous dioxygen complexes of P-450LM2 and P-450LM4 from rabbit liver microsomes were studied by stopped-flow spectrophotometry. The P-450 (FeIIO2) complexes accept an electron from reduced cytochrome b5 and, in a reaction not previously described, donate an electron to oxidized cytochrome b5 to give ferric P-450. A comparison with the electron-transferring properties of ferrous P-450 under anaerobic conditions allowed determination of the limiting steps of the two reactions involving the oxygenated complex. The rate of decay of the dioxygen complex was increased in all cases with b5 present; however, with oxidized b5 a large increase in the rate was observed with P-450 isozyme 4 but not with isozyme 2, whereas the opposite situation was found when reduced b5 was used. The reactions between b5 and ferrous dioxygen P-450 were not at thermodynamic equilibrium under the conditions employed. From the results obtained, a model is proposed in which the ferrous dioxygen complex decomposes rapidly into another species differing from ferric P-450 in its spectral properties and from the starting complex in its electron-transferring properties. A scheme is presented to indicate how competition among spontaneous decay, cytochrome b5 oxidation, and cytochrome b5 reduction by the ferrous O2 complex may influence substrate hydroxylation.  相似文献   

12.
Arabidopsis dwf4 is a brassinosteroid (BR)-deficient mutant, and the DWF4 gene encodes a cytochrome P450, CYP90B1. We report the catalytic activity and substrate specificity of CYP90B1. Recombinant CYP90B1 was produced in Escherichia coli, and CYP90B1 activity was measured in an in vitro assay reconstituted with NADPH-cytochrome P450 reductase. CYP90B1 converted campestanol (CN) to 6-deoxocathasterone, confirming that CYP90B1 is a steroid C-22 hydroxylase. The substrate specificity of CYP90B1 indicated that sterols with a double bond at positions C-5 and C-6 are preferred substrates compared with stanols, which have no double bond at the position. In particular, the catalytic efficiency (k(cat)/K(m)) of CYP90B1 for campesterol (CR) was 325 times greater than that for CN. As CR is more abundant than CN in planta, the results suggest that C-22 hydroxylation of CR before C-5alpha reduction is the main route of BR biosynthetic pathway, which contrasts with the generally accepted route via CN. In addition, CYP90B1 showed C-22 hydroxylation activity toward various C(27-29) sterols. Cholesterol (C27 sterol) is the best substrate, followed by CR (C28 sterol), whereas sitosterol (C29 sterol) is a poor substrate, suggesting that the substrate preference of CYP90B1 may explain the discrepancy between the in planta abundance of C27/C28/C29 sterols and C27/C28/C29 BRs.  相似文献   

13.
Purified bovine adrenal P-45011 beta has been shown to catalyze conversions of cortisol to cortisone (11-oxidase activity), and 19-hydroxyandrostenedione to 19-oxoandrostenedione (19-oxidase activity), in the reconstituted system consisting of NADPH, NADPH:adrenodoxin reductase, and adrenodoxin. The turnover numbers (mol of product formed/min/mol of P-450) were 1.2 for the 11-oxidase activity and 1.4 for the 19-oxidase activity. No reactions took place when any one of the electron-donating components were omitted either in the presence or in the absence of added NADP+. Likewise, rabbit antibody prepared against P-45011 beta immunoprecipitated the 11-oxidase activity with concomitant loss of deoxycorticosterone 11 beta-hydroxylase activity.  相似文献   

14.
The adrenal cortical enzyme systems, 11 beta-hydroxylase, P-450 11 beta, and the side-chain cleavage complex, P-450 scc, differ only in their cytochrome P-450s. Structural modifications of metyrapone, an inhibitor of cytochrome P-450 enzyme systems, have been made to determine the requirement for the A- or B-pyridyl ring for inhibition of P-45011 beta and P-450 scc activities. Three new analogs of metyrapone (A-phenylmetyrapone, B-phenylmetyrapone and diphenylmetyrapone) were synthesized and evaluated as inhibitors using a crude, defatted bovine adrenal cortical mitochondrial preparation. Characterization of the mitochondrial preparation demonstrated: enhancement of both activities by the addition of 15.0 microM adrenodoxin, the addition of 1% ethanol decreased both activities less than 10%, and the apparent Km of deoxycorticosterone for P-45011 beta was 6.8 microM and the apparent Km of cholesterol for P-450 scc was 21.6 microM. Inhibition of P-45011 beta and P-450 scc activities with these compounds demonstrated: the B-pyridyl ring of metyrapone is required for inhibition of both activities whereas requirement for the A-ring is less stringent, and the four metyrapone analogs were more selective inhibitors of P-45011 beta activity. These studies suggest that the A-phenyl metyrapone analog is a good candidate for further development of a selective adrenocortical radiopharmaceutical.  相似文献   

15.
Upon irradiation by a light flash (100-J), the carbon monoxide complex of cytochrome P-450scc was fully photodissociated in both the presence and absence of cholesterol, while less than 20% of the CO complex was photodissociable with those of deoxycorticosterone-bound and -free forms of cytochrome P-45011 beta. When the quantum yield of the reaction was measured for each photodissociable portion, the values were 0.5 and 1.0 for the substrate-free and -bound forms of cytochrome P-450scc, and 0.03 and 0.8 for the substrate-free and -bound forms of cytochrome P-45011 beta, respectively. Thus, CO complexes of these enzymes become more photosensitive upon binding with the specific substrates. Steroid binding also affected kinetic constants of reactions between the ferrous enzymes and CO. The rate constants for the CO recombination at 15 degrees C were 2.7 X 10(6) and 2.3 X 10(5) M-1 s-1 for the substrate-free and -bound forms of cytochrome P-450scc, and were 7.0 X 10(5) and 5.4 X 10(3) M-1 s-1 for the substrate-free and -bound forms of cytochrome P-45011 beta, respectively. The rate constants for the CO dissociation also decreased upon the steroid bindings. The products of the enzyme reactions, pregnenolone and corticosterone, had similar effects on the kinetic constants. From these findings, we postulate that the binding of a steroid to the substrate site of each enzyme alters the bonding character of CO with the heme-iron, thereby affecting both photochemical and kinetic properties of the CO complex. The nature of the photoindissociable portion of the CO complex of cytochrome P-45011 beta is also discussed.  相似文献   

16.
Two distinct forms of cytochrome P-45011 beta, with apparent molecular weights of 48,500 (48.5K) and 49,500 (49.5K), have been isolated from bovine adrenocortical mitochondria. Their amino acid sequences up to the 19th position from the N-terminus were only different at the 6th position (Val and Ala for the 48.5K and 49.5K enzymes, respectively). Each sequence was assignable to a distinct cDNA clone for cytochrome P-450(11) beta (Kirita, S., et al. [1988] J. Biochem. 104, 683-686), indicating that the two proteins originate from different genes in bovine adrenocortical cells. Both forms of cytochrome P-450(11) beta were capable of catalyzing aldosterone synthesis as well as the 11 beta- and 18-hydroxylation of 11-deoxycorticosterone. Thus, at least two distinct cytochrome P-450(11) beta species exist in the adrenal cortex and participate in steroidogenesis.  相似文献   

17.
The involvement of oxygenated cholesterol precursors in the regulation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity was studied by examining the effect of ketoconazole on the metabolism of mevalonic acid, lanosterol and the lanosterol metabolites, lanost-8-ene-3 beta,32-diol,3 beta-hydroxylanost-8-en-32-al and 4,4-dimethylcholesta-8,14-dien-3 beta-ol, in liver subcellular fractions and hepatocyte cultures. Inhibition of cholesterol synthesis from mevalonate by ketoconazole at concentrations up to 30 microM was due exclusively to a suppression of cytochrome P-450LDM (LDM = lanosterol demethylase) activity, resulting in a decreased rate of lanosterol 14 alpha-demethylation. No enzyme after the 14 alpha-demethylase step was affected. When [14C]mevalonate was the cholesterol precursor, inhibition of cytochrome P450LDM was accompanied by the accumulation of several labelled oxygenated sterols, quantitatively the most important of which was the C-32 aldehyde derivative of lanosterol. There was no accumulation of the 24,25-oxide derivative of lanosterol, nor of the C-32 alcohol. Under these conditions the activity of HMG-CoA reductase declined. The C-32 aldehyde accumulated to a far greater extent when lanost-8-ene-3 beta,32-diol rather than mevalonate was used as the cholesterol precursor in the presence of ketoconazole. With both precursors, this accumulation was reversed at higher concentrations of ketoconazole in liver subcellular fractions. A similar reversal was not observed in hepatocyte cultures.  相似文献   

18.
Lanosterol 14 alpha-methyl demethylation is a cytochrome P-450-dependent process that proceeds through the oxidative sequence of alcohol, aldehyde followed by decarbonylation with formic acid release. Microsomal metabolism studies shown here indicate that only lanostenols and 32-oxy-lanostenols with unsaturation at either the delta 7 or delta 8 position in the sterol can be demethylated. The 14 alpha-methyl group of either lanostan-3 beta-ol or delta 6 lanostenol is not oxidized to the anticipated C-32 alcohol or aldehyde by the enzyme, nor are the corresponding 32-oxy-lanostanols demethylated when incubated with microsomal preparations. Despite the lack of metabolism, the saturated and delta 6 sterol analogues are effective competitive inhibitors of demethylase activity. Utilizing preferred substrates, comparison of the component reactions of the demethylation sequence shows that both the oxidative function and lyase function are sensitive to common inhibitors and that both activities require NADPH. These findings strongly support the premise that a P-450 isozyme does catalyze each phase of the lanosterol 14 alpha-methyl demethylation sequence. Collectively these results demonstrate the double-bond requirement for both components of the demethylation sequence and suggest that the olefinic electrons at delta 7 or delta 8 but not delta 6 may participate directly during demethylation. This participation may involve stabilizing a transition state intermediate or directing activated oxygen insertion as part of the P-450 monoxygenase mechanism.  相似文献   

19.
When corticosterone was incubated with cytochrome P-45011 beta purified from bovine adrenocortical mitochondria in the presence of adrenodoxin, NADPH-adrenodoxin reductase and an NADPH generating system, aldosterone as well as 18-hydroxycorticosterone were formed with turnover numbers of 0.23 and 1.1 nmol/min/nmol P-450, respectively. Phospholipids extracted from adrenocortical mitochondria remarkably enhanced the activity of aldosterone formation by the cytochrome P-45011 beta-reconstituted system. The apparent Km and turnover number were estimated to be 6.9 microM and 2.0 nmol/min/nmol P-450 for aldosterone formation in the presence of the lipidic extract. When 18-hydroxycorticosterone was tested as a substrate, cytochrome P-45011 beta showed catalytic activity for aldosterone synthesis with an apparent Km and turnover number of 325 microM and 5.3 nmol/min/nmol P-450, respectively. Carbon monoxide and metyrapone inhibited the production of aldosterone from corticosterone and that from 18-hydroxycorticosterone. These results suggest that conversion of corticosterone and of 18-hydroxycorticosterone to aldosterone occurs through P-45011 beta-catalyzed reaction.  相似文献   

20.
Resonance Raman detection of bound dioxygen in cytochrome P-450cam   总被引:1,自引:0,他引:1  
We have used resonance Raman spectroscopy and isotopic labeling techniques to unambiguously assign the dioxygen stretching frequency (vo-o) in the substrate-bound oxygenated complex of cytochrome P-450cam. The frequency found for Vo-o in the P-450cam system (1140 cm-1) is in remarkable agreement with recent studies of thiolate heme model compounds. The general features of the oxy-P-450cam Raman spectra are tabulated and comparisons are made with the oxy complexes of hemoglobin, myoglobin, and various model compounds. Most of the results are qualitatively explained by consideration of electron donation into the pi g (O2)/d pi (M) orbitals of the oxygenated complex (M = Fe or Co). It is also noted that the effect of the "extra" electron in the nitrogen base Co(II) oxy complexes, in some ways, parallels the effect of the lone pair electrons of thiolate in the oxy-P-450cam complex. This is evidenced by the enhanced resonance Raman activity of vo-o in both the Co(II) and P-450 systems as well as by the similarity of the vo-o frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号