首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Conflicting results of previous electron microscopy studies and concerns about the validity of immunoperoxidase technique employed in those studies to accurately localize endogenous IgG in rat glomerular basement membrane (GBM) prompted us to use other techniques to answer the following question: Does endogenous IgG permeate the matrix of GBM? Immunofluorescence, radioimmunoassay (RIA), isoelectric focusing, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunodetection on Western blots were used to detect endogenous IgG in GBM. Direct immunofluorescence of normal frozen rat kidney sections prepared from in vivo perfused kidney showed endogenous IgG in a linear pattern of staining in the GBM. RIA for rat IgG found the IgG content of collagenase-solubilized GBM to be 0.48% of the dry weight. Immunodetection for rat IgG on Western blots of SDS-PAGE-separated GBM demonstrated endogenous IgG in purified collagenase-solubilized GBM. IgG was detected as an intact molecule with covalently linked light and heavy chains and not as small immunoreactive catabolic fragments. Isoelectric focusing followed by immunodetection on Western blot showed that part of the endogenous IgG in GBM was anionic. The results clearly show that under normal conditions, endogenous IgG can permeate into the collagen matrix of GBM in rat and that some of this IgG is more anionic than the IgG in serum. These findings may assist in understanding the transit of autoantibodies to subepithelial glomerular antigens located beneath the matrix of GBM in membranous glomerulonephropathy.  相似文献   

2.
Microdissection of acellular rat renal cortex with pepsin was carried out to investigate the morphological substructure of glomerular basement membrane (GBM) by high resolution SEM. Renal cortical blocks (less than 5 mm3) from adult male Sprague Dawley rats were rendered acellular by sequential detergent extraction and digested up to 184 hrs with 5 mg/ml pepsin (185 U/mg) in 0.5 M acetic acid (pH 2) at 10-15 degrees C. Samples were conventionally prepared for SEM, and observed at original magnifications of 500-100,000 diameters. At low magnifications (500-5,000x), acellular GBM surfaces appeared smooth at all digestion times. At higher magnifications (50,000-100,000x), control GBM surfaces were finely granular. Granule diameter ranged from 20-80 nm, with most between 30-40 nm. Pepsin digestion did not affect average granule size. Beginning at 44 hrs of digestion, intrinsic fibrillar structures comprised of linear arrays of 20-40 nm granules were observed on/in GBM surfaces. At later incubation times, this component of GBM became more extensive. At 160 hrs, the fibrillar arrays frequently bifurcated and showed distinctive "forked" termini, some of which comprised two sides of a triangle (120-150 nm on a side). Fork "handles" (310-350 nm in length) radiated from each angle of the triangle. These sometimes terminated in large granules (approximately 100 nm in diameter), two of which appeared to connect fibrillar arrays end-to-end. Together with other arrays, the interconnected triangles appeared to comprise a three-dimensional meshwork extending into the GBM and possibly providing support for, its granular components.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2489-2498
Tannic acid in glutaraldehyde fixatives greatly enhanced the visualization of two developmentally and morphologically distinct stages in glomerular basement membrane (GBM) formation in newborn rat kidneys. First, in early stage glomeruli, double basement membranes between endothelial cells and podocytes were present and, in certain areas, appeared to be fusing. Second, in maturing stage glomeruli, elaborate loops and outpockets of basement membrane projected into epithelial, but not endothelial, sides of capillary walls. When Lowicryl thin sections from newborn rat kidneys were sequentially labeled with rabbit anti-laminin IgG and anti-rabbit IgG-colloidal gold, gold bound across the full width of all GBMs, including double basement membranes and outpockets. The same distribution was obtained when sections from rats that received intravenous injections of rabbit anti-laminin IgG 1 h before fixation were labeled directly with anti- rabbit IgG-colloidal gold. When kidneys were fixed 4 d after anti- laminin IgG injection, however, loops beneath the podocytes in maturing glomeruli were usually unlabeled and lengths of unlabeled GBM were interspersed with labeled lengths. In additional experiments, rabbit anti-laminin IgG was intravenously injected into newborn rats and, 4-14 d later, rats were re-injected with sheep anti-laminin IgG. Sections were then doubly labeled with anti-rabbit and anti-sheep IgG coupled to 10 and 5 nm colloidal gold, respectively. Sheep IgG occurred alone in outpockets of maturing glomeruli and also in lengths of GBM flanked by lengths containing rabbit IgG. These results indicate that, after fusion of double basement membranes, new segments of GBM appear beneath developing podocytes and are subsequently spliced into existing GBM. This splicing provides the additional GBM necessary for expanding glomerular capillaries.  相似文献   

4.
One of the major complicating factors in insulin-dependent diabetes mellitus is nephropathy. Several investigators have linked heparan sulfate (HS) alterations in the glomerular basement membrane (GBM) with albuminuria as a marker of abnormal blood filtration and the subsequent progression to renal failure. In this study, we examined the fine structure of HS in the glomerulus and the GBM isolated from the kidneys of rats injected with streptozotocin. Using fluorophore-assisted carbohydrate electrophoresis, we obtained disaccharide composition analyses for HS. In a time course study, we observed that normal rat HS isolated from the GBM becomes more N-sulfated as the glomeruli mature over a period of 8 weeks. Diabetic rats injected with streptozotocin at the beginning of this period showed a reversal of this trend. Using a graded sieve technique, we found that two different sizes of glomeruli could be isolated from the rat kidneys and that there was a significant difference in the HS disaccharide content between these two pools of glomeruli. Only the larger sized glomeruli had less N-sulfation of HS as a result of insulin-dependent diabetes mellitus. This change in the fine structure of HS was localized to the GBM and was not associated with cell surface HS. We also generated oligosaccharides of HS that portray fine structural alterations in the diabetic rats indicative of a loss of the sulfation of N-acetylglucosamine.  相似文献   

5.
15 hazardous industrial waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes were also evaluated. 7 of the crude wastes were mutagenic, but only 2 of the extracts of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-h urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and beta-glucuronidase. The 3 crude wastes that produced these 3 mutagenic urines were, themselves, mutagenic. Adequate volumes of 6 of the 10 raw urines were available for extraction/concentration. These 6 urines were incubated with beta-glucuronidase and eluted through Sep-Pak C18 columns; the methanol eluates of 3 of the urines were mutagenic, and these were the same 3 whose raw urines also were mutagenic. In general, the C18/methanol extraction procedure reduced the cytotoxicity and increased the mutagenic potency of the urines. To our knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes. Based on the present results, the use of only strain TA98 in the presence of S9 might be adequate for general screening of hazardous wastes or waste extracts for genotoxicity. The urinary mutagenesis assay does not appear to be a useful adjunct to the Salmonella assay for screening hazardous wastes. The problems associated with chemically fractionating diverse types of hazardous wastes for bioassay are also discussed.  相似文献   

6.
Glomerulonephritis is believed to result commonly from Ab-mediated glomerular injury. However, Ab-associated mechanisms alone cannot explain many cases of human glomerulonephritis. We developed a rat model of human anti-glomerular basement membrane (GBM) disease to investigate T cell and Ab response, and their associations with the disease. A single immunization of highly denatured recombinant mouse collagen IV alpha3 chain noncollagen domain 1 (rCol4alpha3NC1) induced severe glomerulonephritis in 100% of Wistar Kyoto rats, 33% of which died of this disease around day 35 postimmunization. The renal pathology demonstrated widespread glomerular damage and a mononuclear cell infiltration within the interstitial tissue. T cells from immunized rats responded not only to rCol4alpha3NC1, but also to isolated rat GBM. Sera Abs to rCol4alpha3NC1 were detectable in 100% of the rats, but only 20% of the rats had low levels of Ab to isolated rat GBM by Western blot, and none by immunofluorescence. Furthermore, IgG/M binding to or C3 deposition on endogenous GBM in immunized rats were not detected in most of the experimental rats, and showed no statistical correlation with disease severity. Additionally, no electronic dense deposition in the glomeruli was detected in all rats. Those data revealed a disassociation between the disease and anti-GBM Ab. T cell-mediated mechanisms, which are currently under our investigation, may be responsible for the glomerular disease.  相似文献   

7.
Renal glomerular basement membranes (GBMs) exhibit a charge-selective barrier, comprised of anionic sites, that restrict the passage of anionic molecules into the urine. These sites are located primarily in the laminae rarae interna (LRI) and externa (LRE) of the GBM and consist of heparan sulfate proteoglycan (HSPG). Previous efforts to localize HSPG core protein within various layers of the GBM have been contradictory. In the present study when rat renal cortex blocks were treated by immersion with the cationic probe, polyethyleneimine (PEI), GBMs exhibited anionic sites concentrated primarily in the LRE and more irregularly within the LRI and lamina densa. All sites were heparitinase sensitive indicating that PEI positive sites represent negatively charged groups associated with heparan sulfate. In order to gain information on the distribution of the HSPG protein core, antibodies to HSPG from the EHS tumor matrix [anti-(EHS) HSPG] and GBMs [anti-(GBM) HSPG] were used together with immunogold to label thin sections of Lowicryl embedded kidney cortex. Depending upon the antisera used, markedly different distributions of HSPG were obtained. Immunolabelling with anti-(GBM) HSPG suggested a distribution of HSPG which was restricted to the laminae rarae, whereas labelling with anti-(EHS) HSPG indicated that the protein core penetrates through all layers of the GBM.  相似文献   

8.
Infiltration of the central nervous system by neoplastic cells in patients with glioblastoma multiforme (GBM) leads to neurological dysfunction and eventually to death. The elucidation of the mechanisms underlying the aggressive nature of GBM aims at improving radio-, chemo- and gene therapy. This review is focused on the use of rat C6 glioma as an experimental model system for GBM and provides an overview of the experimental data published in the literature using this cell line in elucidating the mechanism of tumor growth, angiogenesis and invasion, and in the design and evaluation of anticancer therapies. Understanding the stages of malignant brain tumor progression requires a series of experimental approaches with a varying degree of complexity. Implantation of malignant cells into animal brain tissue closely resembles in vivo tumor growth and has the advantage over simplified models that inflammatory and vascular mechanisms are activated. However, the complexity of these models makes it difficult to identify the individual processes involved in sustained tumor growth, angiogenesis and invasion. In cell culture models, the effect of growth factors, extracellular matrix components, proteases and adhesion molecules can be investigated. The secretion of tumor-derived factors into the medium can also be analyzed when simplified models are used. This review is a compilation of experimental data focused on the characterization of tumor-related processes and on the evaluation of new therapies for the treatment of malignant glial neoplasms using rat C6 glioma as a model system.  相似文献   

9.
The filtrate formed by renal glomerular capillaries must pass through a layer of endothelial cells, the glomerular basement membrane (GBM), and a layer of epithelial cells, arranged in series. To elucidate the relative resistances of the GBM and cell layers to movement of uncharged macromolecules, we measured the diffusional permeabilities of intact and cell-free capillaries to narrow fractions of Ficoll with Stokes-Einstein radii ranging from 3.0 to 6.2 nm. Glomeruli were isolated from rat kidneys, and diffusion of fluorescein-labeled Ficoll across the walls of single capillary loops was monitored with a confocal microscopy technique. In half of the experiments the glomeruli were treated first to remove the cells, leaving skeletons that retained the general shape of the glomerulus and consisted almost entirely of GBM. The diffusional permeability of cell-free capillaries to Ficoll was approximately 10 to 20 times that of intact capillaries, depending on molecular size. Taking into account the blockage of much of the GBM surface by cells, the contribution of the GBM to the diffusional resistance of the intact barrier was calculated to be 13% to 26% of the total, increasing with molecular size. Thus, the GBM contribution, although smaller than that of the cells, was not negligible. The structure that is most likely to be responsible for the cellular part of the diffusional resistance is the slit diaphragm, which spans the filtration slit between epithelial foot processes. A novel hydrodynamic model was developed to relate the diffusional resistance of the slit diaphragm to its structure, which was idealized as a single layer of cylindrical fibers in a ladder-like arrangement.  相似文献   

10.
Characteristic pathological changes in the glomeruli in diabetic nephropathy include expansion of the mesangial matrix and thickening of the glomerular basement membrane (GBM). Using an acellular digestion technique combined with scanning electron microscopy, the three-dimensional ultrastructural changes in glomerular extracellular matrices were studied in rats with diabetic glomerulopathy. Diabetes was induced by the intravenous injection of streptozotocin and morphological analyses were performed 3, 6 and 11 months after the injection. Expansion of mesangial area and GBM thickening became evident with time. After treatment with the series of detergents, all cellular components were completely removed leaving the extracellular matrices intact. In normal controls, the mesangial matrix appeared as fenestrated septa with oval or round stomata between the glomerular capillaries. In diabetic glomerulopathy, expansion of mesangial matrix and narrowing of the mesangial fenestrae were observed. These changes in the mesangial matrices seem to play a vital role in the progression of glomerulosclerosis in rat diabetes. A subendothelial thin layer of the GBM was continuous with the mesangial matrix. One cause of GBM thickening in streptozotocin diabetes may be expansion of the mesangial matrix into the peripheral GBM.  相似文献   

11.
Glioblastoma (GBM) is an infiltrative tumor that is difficult to eradicate. Treating GBM with mesenchymal stem cells (MSCs) that have been modified with the HSV-Tk suicide gene has brought significant advances mainly because MSCs are chemoattracted to GBM and kill tumor cells via a bystander effect. To use this strategy, abundantly present adipose-tissue-derived mesenchymal stem cells (AT-MSCs) were evaluated for the treatment of GBM in mice. AT-MSCs were prepared using a mechanical protocol to avoid contamination with animal protein and transduced with HSV-Tk via a lentiviral vector. The U-87 glioblastoma cells cultured with AT-MSC-HSV-Tk died in the presence of 25 or 50 μM ganciclovir (GCV). U-87 glioblastoma cells injected into the brains of nude mice generated tumors larger than 3.5 mm2 after 4 weeks, but the injection of AT-MSC-HSV-Tk cells one week after the U-87 injection, combined with GCV treatment, drastically reduced tumors to smaller than 0.5 mm2. Immunohistochemical analysis of the tumors showed the presence of AT-MSC-HSV-Tk cells only within the tumor and its vicinity, but not in other areas of the brain, showing chemoattraction between them. The abundance of AT-MSCs and the easier to obtain them mechanically are strong advantages when compared to using MSCs from other tissues.  相似文献   

12.
Marked differences were found in the electrophoretic profiles and amino-acid compositions of components prepared from rat glomerular basement membrane (GBM) by a number of different solubilization procedures. Treatment with reducing agent resulted in a simplified electrophoretic pattern which was characterized by the presence of a major collagenous component with a mol.wt, of 150 000. In contrast, detergent solubilized mainly lower-mol.-wt, material which had a more polar amino-acid composition. When both reagents were used together the majority of the basement-membrane material was soJubilized within 2 h and components with mol.wts, of 170 000 and 135 000 were predominant i n the pro- region of the gel. Treatment for a further 16 h was required to solubilize higher-mol.-wt, material and to achieve maximum solubility of components in the pro- region with mol.wts, of 185 000 and 150 000. These methods provide a means of separating subcomponents of rat GBM while avoiding the problems of degradation inherent in enzymatic procedures.  相似文献   

13.
The filtration rates for water and a polydisperse mixture of Ficoll across films of isolated glomerular basement membrane (GBM) were measured to characterize convective transport across this part of the glomerular capillary wall. Glomeruli were isolated from rat kidneys and the cells were removed by detergent lysis, leaving a preparation containing almost pure GBM that could be consolidated into a layer at the base of a small ultrafiltration cell. A Ficoll mixture with Stokes-Einstein radii ranging from about 2.0 to 7.0 nm was labeled with fluorescein, providing a set of rigid, spherical test macromolecules with little molecular charge. Filtration experiments were performed at two physiologically relevant hydraulic pressure differences (delta P), 35 and 60 mmHg. The sieving coefficient (filtrate-to-retentate concentration ratio) for a given size of Ficoll tended to be larger at 35 than at 60 mmHg, the changes being greater for the smaller molecules. The Darcy permeability also varied inversely with pressure, averaging 1.48 +/- 0.10 nm2 at 35 mmHg and 0.82 +/- 0.07 nm2 at 60 mmHg. Both effects could be explained most simply by postulating that the intrinsic permeability properties of the GBM change in response to compression. The sieving data were consistent with linear declines in the hindrance factors for convection and diffusion with increasing pressure, and correlations were derived to relate those hindrance factors to molecular size and delta P. Comparisons with previous Ficoll sieving data for rats in vivo suggest that the GBM is less size-restrictive than the cell layers, but that its contribution to the overall size selectivity of the barrier is not negligible. Theoretical predictions of the Darcy permeability based on a model in which the GBM is a random fibrous network consisting of two populations of fibers were in excellent agreement with the present data and with ultrastructural observations in the literature.  相似文献   

14.
We have isolated a tripeptide from normal plasma and autistic urines which stimulates the uptake of serotonin (5-HT) into platelets. This peptide was purified by high-performance liquid chromatography (HPLC) and characterized by sequenation and mass-spectrometry. Synthetic peptide showed co-chromatography with the biological sample in the HPLC systems used. Close to 60% of the autistic children diagnosed using the Diagnostic Statistical Manual III-R had an increased HPLC peak eluting like this peptide in their urines compared with controls.  相似文献   

15.
The naturally-occurring compound, n-butylidenephthalide (BP), which is isolated from the chloroform extract of Angelica sinensis (AS-C), has been investigated with respect to the treatment of angina. In this study, we have examined the anti-tumor effects of n-butylidenephthalide on glioblastoma multiforme (GBM) brain tumors both in vitro and in vivo. In vitro, GBM cells were treated with BP, and the effects of proliferation, cell cycle and apoptosis were determined. In vivo, DBTRG-05MG, the human GBM tumor, and RG2, the rat GBM tumor, were injected subcutaneously or intracerebrally with BP. The effects on tumor growth were determined by tumor volumes, magnetic resonance imaging and survival rate. Here, we report on the potency of BP in suppressing growth of malignant brain tumor cells without simultaneous fibroblast cytotocixity. BP up-regulated the expression of Cyclin Kinase Inhibitor (CKI), including p21 and p27, to decrease phosphorylation of Rb proteins, and down-regulated the cell-cycle regulators, resulting in cell arrest at the G(0)/G(1) phase for DBTRG-05MG and RG2 cells, respectively. The apoptosis-associated proteins were dramatically increased and activated by BP in DBTRG-05MG cells and RG2 cells, but RG2 cells did not express p53 protein. In vitro results showed that BP triggered both p53-dependent and independent pathways for apoptosis. In vivo, BP not only suppressed growth of subcutaneous rat and human brain tumors but also, reduced the volume of GBM tumors in situ, significantly prolonging survival rate. These in vitro and in vivo anti-cancer effects indicate that BP could serve as a new anti-brain tumor drug.  相似文献   

16.
Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls.  相似文献   

17.
Kidney glomerular basement membranes (GMBs) originate in development from fusion of a dual basement membrane between endothelial cells and primitive epithelial podocytes. After fusion, segments of newly synthesized matrix, derived primarily from podocytes, appear as subepithelial outpockets and are spliced into GBMs during glomerular capillary loop expansion. To investigate GBM assembly further, we examined newborn mouse kidneys with monoclonal rat anti-mouse laminin IgGs (MAb) conjugated to horseradish peroxidase (HRP). In adults, these MAb strongly label glomerular mesangial matrices but bind only weakly or not at all to mature GBMs. In contrast, anti-laminin MAb intensely bound newborn mouse GBMs undergoing initial assembly. After intraperitoneal injection of MAb-HRP into neonates, dense binding occurred across both subendothelial and subepithelial pre-fusion GMBs as well as forming mesangial matrices. Considerably less MAb binding was seen, however, in post-fusion GBMs from more mature glomeruli in the same section, although mesangial matrices remained positive. In addition, new subepithelial segments in areas of splicing were negative. These results conflict with those obtained previously with injections of polyclonal anti-laminin IgGs into newborns or adults, which result in complete labeling of all GBMs. Although epitope masking cannot be completely excluded, we believe that decreased MAb binding to developing GBM reflects actual epitope loss. This loss could occur by laminin isoform substitution, conformational change, and/or proteolytic processing during GBM assembly.  相似文献   

18.
The concentrations of glycolate (hydroxyacetate) and lactate are significantly elevated above control values in urines from streptozotocin-diabetic rats, regardless of whether data are expressed in terms of μg/ml urine or μg/day. The same levels of oxalate and glyoxylate are excreted in 24 h in the urines from normal and diabetic rats. Lactate levels are elevated above control values in serum from streptozotocin-diabetic rats.The elevation of glycolate levels in diabetic rat urine compared to control values occurs regardless of diet and regardless of whether rats were fed or fasted during the 24 h urine collection period.Rat liver glycolate oxidase may be used to assay glycolate concentrations in the presence of up to 500 μg/ml l-lactate when pH 8.6 Tris-Cl is used as buffer. Results obtained with this assay compare qualitatively with the standard colorimetric assay using 2,7-dihydroxynaphthlene for glycolate determination. Beef liver glycolate oxidase is not effective for use in glycolate assays. The identity of urinary glycolate was confirmed by gas-liquid and by paper chromatography.  相似文献   

19.
为了探究二甲双胍对不同胶质母细胞瘤U87细胞、GL261细胞及C6细胞增殖的影响,选取小鼠GBM细胞GL261细胞系、大鼠GBM细胞C6细胞系及人源GBM细胞U87MG细胞系,使用二甲双胍处理,通过CCK-8法检测细胞增殖活性;细胞实时荧光检测细胞凋亡水平;平板克隆实验检测GBM细胞克隆形成能力;CCK-L法检测胞内ATP水平;Western blot检测Akt及其磷酸化水平。结果显示,与对照组相比,随着作用浓度增加,二甲双胍显著抑制GBM细胞增殖活性,影响细胞形态;与对照组相比,同一作用浓度下,二甲双胍提高了GBM细胞凋亡水平,抑制了GBM细胞克隆形成能力,降低了GBM胞内ATP的产生;二甲双胍处理24 h后,GBM细胞内p-Akt表达显著下调,Akt无明显变化。结果表明,二甲双胍在体外可抑制多种GBM细胞的增殖、克隆,降低胞内ATP水平,其机制可能与Akt磷酸化水平相关,研究结果为进一步探索二甲双胍对胶质母细胞瘤的作用机制提供了体外研究理论基础。  相似文献   

20.
《The Journal of cell biology》1989,109(6):3477-3491
To examine the ultrastructural distribution of laminin within kidney basement membranes, we prepared rat anti-mouse laminin mAbs to use in immunolocalization experiments. Epitope domains for these mAbs were established by immunoprecipitation, immunoblotting, affinity chromatography, and rotary shadow EM. One mAb bound to the laminin A and B chains on blots and was located to a site approximately 15 nm from the long arm-terminal globular domain as shown by rotary shadowing. Conjugates of this long arm-specific mAb were coupled to horseradish peroxidase (HRP) and intravenously injected into mice. Kidney cortices were fixed for microscopy 3 h after injection. HRP reaction product was localized irregularly within the renal glomerular basement membrane (GBM) and throughout mesangial matrices. In addition, this mAb bound in linear patterns specifically to the laminae rarae of basement membranes of Bowman's capsule and proximal tubule. This indicates the presence of the long arm immediately beneath epithelial cells in these sites. The laminae densae of these basement membranes were negative by this protocol. In contrast, the lamina rara and densa of distal tubular basement membranes (TBM) were both heavily labeled with this mAb. A different ultrastructural binding pattern was seen with eight other mAbs, including two that mapped to different sites on the short arms by rotary shadowing and five that blotted to a large pepsin-resistant laminin fragment (P1). These latter mAbs bound weakly or not at all to GBM but all bound throughout mesangial matrices. In contrast, discrete spots of HRP reaction product were seen across all layers of Bowman's capsule BM and proximal TBM. These same mAbs, however, bound densely across the full width of distal TBM. Our findings therefore show that separate strata of different basement membranes are variably immunoreactive to these laminin mAbs. The molecular orientation or integration of laminin into the three dimensional BM meshwork therefore varies with location. Alternatively, there may be a family of distinct laminin-like molecules distributed within basement membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号