首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Using immunocytochemistry, morphometry and electron microscopy, we have investigated the distribution and characteristics of CD15-immunoreactive (IR) neurons in the guinea pig retina. In the present study, two types of amacrine cells, including interplexiform cells in the inner nuclear layer (INL) and some cells in the ganglion cell layer (GCL), were labeled with anti-CD15 antisera. Type 1 amacrine cells had large somata located in the INL, with long and branched processes ramifying mainly in strata 4 and 5 of the inner plexiform layer (IPL). Somata of type 2 cells had smaller diameters, and were also located in the INL. Their processes stratified in stratum 1. The densities of type I and type 2 amacrine cells increased from 152.8+/-36.7/mm2 and 160.6+/-61.7/mm2 in the peripheral retina, to 404.3+/-41.5/mm2 and 552.2+/-72.2/mm2 in the central retina, respectively. Cells in the GCL exhibiting CD15 immunoreactivity were rarely observed. Colocalization experiments, using consecutive semi-thin sections, demonstrated that these CD15-IR amacrine cells exhibited gamma-aminobutyric acid (GABA) immunoreactivity. In addition, the processes of the type 1 cells formed one member of the postsynaptic dyads that are formed in the axon terminals of rod bipolar cells. Most of these processes made reciprocal synapses back to the axon terminals of the rod bipolar cells. Thus, CD15-IR amacrine cells constitute a subpopulation of GABAergic amacrine cells in the guinea pig retina, and the type 1 cells among them provide the inhibitory input to rod bipolar cells.  相似文献   

2.
3.
PurposeTo investigate the expression patterns of LIM Homeobox 6 (Lhx6) in the adult and developing mouse retina.MethodsThe Lhx6-GFP knock-in allele was used to activate constitutive expression of a GFP reporter in Lhx6 expressing cells. Double labeling with GFP and retinal markers in the mouse retina at postnatal day 56 (P56) was performed to identify the cell types expressing Lhx6. To determine the neuronal cell types that express Lhx6, double labeling with GFP and various retinal markers was employed in the differentiating retina at P7 and P15.ResultsGFP + Lhx6 lineage cells were determined in Brn3a + retinal ganglion cells (RGCs), ChAT + amacrine cells (ACs), and Islet-class LIM-homeodomain 1 (Isl1+) ACs in the mouse retina at P56. In the ganglion cell layer (GCL), Lhx6 was expressed in Brn3a + RGCs but not Brn3b + RGCs at P15. Moreover, in the inner nuclear layer (INL), Lhx6 was not expressed in Bhlhb5+ ACs at P15. However, Lhx6 was weakly expressed in Glyt1+ ACs and Pax6+ ACs, and strongly expressed in Isl1+ and ChAT + ACs at P15.ConclusionLhx6 was expressed in RGCs and ACs in both the adult and developing mouse retina.  相似文献   

4.
The retina of newborn rats consists of the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL) containing amacrine cells and the neuroblastic layer (NBL). In retinal explants, the GCL enters cell death after sectioning of the optic nerve, whereas there is almost no cell death in the NBL. When protein synthesis is inhibited with anisomycin, cell death is blocked in the GCL and induced in the NBL. We tested the roles of nitric oxide (NO) on cell death in the retina in vitro. Either L-arginine, the substrate for NO synthase or the NO donor S:-nitroso-acetylpenicillamine (SNAP) blocked cell death induced by anisomycin in the NBL, but had no effect in the GCL. Sepiapterin, a precursor of the nitric oxide synthase (NOS)-cofactor tetrahydrobiopterin also had a protective effect against anisomycin. The use of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble form of guanylyl cyclase, showed that anti-apoptotic effect of SNAP is partially mediated by cGMP generated by activation of guanylyl cyclase. NADPH-diaphorase histochemistry stained cells only in the GCL and INL. Thus, the degenerative effect of anisomycin is observed within the NBL, whereas the localization of NOS is restricted to the GCL and INL. The protective effect of both the NO substrate and cofactor upon cell death induced by anisomycin in the NBL, indicates that NO produced by amacrine and ganglion cells is a paracrine modulator of cell death within the retinal tissue.  相似文献   

5.
Immunocytochemical techniques were employed to locate somatostatin (SS)-containing cells in the retina of the 13-lined ground squirrel (Spermophilus tridecemlineatus). In normal retinas immunostain was limited to neuronal processes, yet distinctly labeled somata were detected in retinas of animals pretreated with colchicine. Labeled cell bodies were located in the outermost and innermost portions of the inner nuclear layer (INL) and in the ganglion cell layer (GCL). The largest population of SS-like immunoreactive neurons was found in the innermost INL. These cells were identified as small and medium sized amacrine cells whose soma diameters ranged from 4 to 14μm. A smaller population of immunoreactive cells was observed in the outermost region of the INL. These cells, presumptive horizontal cells, were found mainly in peripheral regions of the retina. Immunoreactive cells in the GCL were of two types: displaced amacrines, and retinal ganglion cells. SS-positive axons in the optic fiber layer suggest that some of the immunoreactive GCL neurons were ganglion cells, and it is our opinion that these cells belong to a class of associational ganglion cells previously identified in other species.  相似文献   

6.
本文用免疫细胞化学ABC法,研究15—38周龄人胎视网膜神经肽Y免疫反应(NeuropeptideYimmunorective,NPY-IR)神经元(以下称NPY-IR细胞)的发育。结果表明:①胎龄15周视网膜中央部已出现不同类型的NPY-IR细胞:位于黄斑及其周围外核层的为NPY-IR视锥细胞;位于内核层最内一列的为NPY-IR无长突细胞位于节细胞层的可能为NPY-IR移位无长突细胞或节细胞;内核层和节细胞层的NPY-IR细胞的突起均分布在内网层的第1亚层。②胎龄24周后,NPY-IR视锥细胞完全消失。③随着视网膜的发育,内核层和节细胞层的NPY-IR细胞数量增多,突起增粗增长,胞体分布由中央部扩展到周边部,其中内核层NPY-IR细胞的密度呈现从中央部向周边部逐渐降低的分布方式,节细胞层NPY-IR细胞则多数集中分布在视网膜的边缘和黄斑之间,形成较高密度的环状区。  相似文献   

7.
1. Gamma-aminobutryic acid (GABA), a major inhibitory transmitter of the vertebrate retina, is synthesized from glutamate by L-glutamate decarboxylase (GAD) and mediates neuronal inhibition at GABAA receptors. GAD consists of two distinct molecular forms, GAD65 and GAD67, which have similar distribution patterns in the nervous system (Feldblum et al., 1990; Erlander and Tobin, 1991). GABAA receptors are composed of several distinct polypeptide subunits, of which the GABAA alpha 1 variant has a particularly extensive and widespread distribution in the nervous system. The aim of this study was to determine the cellular localization patterns of GAD and GABAA alpha 1 receptor mRNAs to define GABA- and GABAA receptor-synthesizing neurons in the rat retina. 2. GAD and GABAA alpha 1 mRNAs were localized in retinal neurons by in situ hybridization histochemistry with 35S-labeled antisense RNA probes complementary to GAD67 and GABAA alpha 1 mRNAs. 3. The majority of neurons expressing GAD67 mRNA is located in the proximal inner nuclear layer (INL) and ganglion cell layer (GCL). Occasional GAD67 mRNA-containing neurons are present in the inner plexiform layer. Labeled neurons are not found in the distal INL or in the outer nuclear layer (ONL). 4. GABAA alpha 1 mRNA is expressed by neurons distributed to all regions of the INL. Some discretely labeled cells are present in the GCL. Labeled cells are not observed in the ONL. 5. The distribution of GAD67 mRNA demonstrates that numerous amacrine cells (conventional, interstitial, and displaced) and perhaps interplexiform cells synthesize GABA. These cells are likely to employ GABA as a neurotransmitter. 6. The distribution of GABAA alpha 1 mRNA indicates that bipolar, amacrine, and perhaps ganglion cells express GABAA receptors having an alpha 1 polypeptide subunit, suggesting that GABA acts directly upon these cells.  相似文献   

8.
In this study, we aimed to investigate the distribution pattern of ubiquitin and p97/VCP in the rat retina during postnatal development. Eyeballs from 1-, 4-, 10-, 36- and 72-week-old rats were examined by immunohistochemistry, and protein colocalization was determined by immunofluorescence microscopy. In the 1-week-old rat retina, p97/VCP was strongly expressed in the neuroblast layer, however no ubiquitin immunoreactivity was observed. p97/VCP immunoreactivity was present in the ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), inner segment (IS) of the photoreceptor layer, and retinal pigment epithelium in the 4- and 10-week-old rat retinas. p97/VCP immunoreactivity increased significantly in the 10-week-old rat retinas. Ubiquitin was barely seen in the 4-week-old rat retinas, and ubiquitin expression was weak in the GCL and the IPL of the 10-week-old rat retinas. In the 36- and 72-week-old rats, the presence of ubiquitin was remarkable in the IS, INL, IPL and GCL, however, p97/VCP immunoreactivity was significantly decreased. Colocalization of ubiquitin and p97/VCP was also observed in the INL, IS, GCL and ONL of 36- and 72-week-old rat retinas. Our results indicate that p97/VCP immunoreactivity in the retina significantly decreases after rats reach 10 weeks of age, whereas ubiquitin immunoreactivity increases with aging. These results suggest that an altered expression pattern of p97/VCP and ubiquitin in the developing rat retina may associate with age-related retinal degeneration.  相似文献   

9.
10.
Summary Two monoclonal antibodies directed against somatostatin 14 were used to study immunoreactive neurons, their processes and their synapses in the cat retina. In retinal whole-mounts, a sparse population of wide-field displaced amacrine cells was observed predominantly in the ventral retina and near the retinal margin. Processes of these cells ramified mainly in two distinct strata within the inner plexiform layer: one near the inner nuclear layer (INL), and the other near the ganglion cell layer (GCL). The length of immunoreactive fibres within each plexus was measured: 232±32 mm/mm2 near the INL and 230±74 mm/mm2 near the GCL in all retinal regions. The immunoreactive processes were studied using electron-microscopic techniques; conventional and some ribbon-containing synapses (dyads) were found. Immunolabelled processes received input synapses from other amacrine cell processes. These investigations provide further evidence that this cell population has a diffuse, regulatory or modulatory role for visual-information processing in the inner plexiform layer.  相似文献   

11.
B50/GAP-43 has been implicated in neural plasticity, development, and regeneration. Several studies of axonally transported proteins in the optic nerve have shown that this protein is synthesized by developing and regenerating retinal ganglion cells in mammals, amphibians, and fish. However, previous studies using immunohistochemistry to localize B50/GAP-43 in retina have shown that this protein is found in the inner plexiform layer in adults. Since the inner plexiform layer contains the processes of amacrine cells, ganglion cells, and bipolar cells to determine which cells in the retina express B50/GAP-43, we have now used in situ hybridization to localize the mRNA that codes for this protein in the developing rat retina. We have found that B50/GAP-43 is expressed primarily by cells in the retinal ganglion cell layer as early as embryonic day 15, and until 3 weeks postnatal. Some cells in the inner nuclear layer, possibly a subclass of amacrine cells, also express B50/GAP-43 protein and mRNA; however, the other retinal neurons–bipolar cells, photoreceptors, and horizontal cells express little, if any, B50/GAP-43 at any stage in their development. Early in development, the protein appears in the somata and axons of ganglion cells, while later in development, B50/GAP-43 becomes concentrated in the inner plexiform layer, where it continues to be expressed in adult animals. These results are discussed in terms of previous proposals as to the functions of this molecule. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Using immunocytochemistry, we have investigated the localization of CD15 in the rat retina. In the present study, two types of amacrine cell in the inner nuclear layer (INL) and some cells in the ganglion cell layer were labeled with anti-CD15 antisera. Type 1 amacrine cells have large somata located in the INL, with long and branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Type 2 cells have a smaller soma and processes branching in stratum 1 of the IPL. A third population showing CD15 immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer. The densities of type 1 and type 2 amacrine cells were 166/mm(2) and 190/mm(2) in the central retina, respectively. The density of displaced amacrine cells was 195/mm(2). Colocalization experiments demonstrated that these CD15-immunoreactive cells exhibit gamma-aminobutyric acid and neuronal nitric oxide synthase (nNOS) immunoreactivities. Thus, the same cells of the rat retina are labeled by anti-CD15 and anti-nNOS antisera and these cells constitute a subpopulation of GABAergic amacrine cells.  相似文献   

13.
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.  相似文献   

14.
牛蛙视网膜诱导型一氧化氮合酶免疫组化定位   总被引:2,自引:1,他引:1  
用免疫组织化学方法研究了诱导型一氧化氮酶(iNOS)在牛蛙视网膜中的表达。结果显示,在正常状态视网膜中,无长突细胞呈弱阳性反应;节细胞层、双极细胞,水平细胞和光感受器内段呈阴性反应,在暗适应状态下,神经节细胞,内核层的无长突细胞呈强阳性反应;一些双极细胞,水平细胞和光感受器内段呈弱阳性反应,提示NO主要在暗适应状态下参与视网膜的信息传递过程。  相似文献   

15.
In mammalian development, apoptosis spreads over the retina in consecutive waves and induces a remarkable amount of cell loss. No evidence for such consecutive waves has been revealed in the fish retina so far. As the zebrafish is of growing importance as a model for retinal development and for degenerative retinal diseases, we examined the onset and time course of apoptosis in the developing zebrafish retina and in adult fish. We found that apoptosis peaked in the ganglion cell layer (GCL) and inner nuclear layer (INL) in early developmental stages (3-4 days post-fertilization; dpf) followed by a second, but clearly smaller wave at 6-7dpf. Apoptosis in the outer nuclear layer (ONL) started at 5dpf and peaked at 7dpf. This late-onset high peak of apoptosis of photoreceptors is different from that of all other species examined to date. With 1.09% of cells in the GCL and 1.10% in the ONL being apoptotic, the rate of apoptosis in the developing zebrafish retina was conspicuously lower than that observed in other vertebrates (up to 50% in GCL). During development (2-21dpf), apoptotic waves were most obvious in the central retina, whereas in the periphery near the marginal zone (MZ), apoptosis was much lower; in adult animals, practically no apoptosis was present in the central retina but it still occurred near the MZ. Our data show that the onset and time course of apoptosis in the GCL and INL of the zebrafish is comparable with other vertebrates; however, the amount of apoptosis is clearly reduced. Thus, apoptosis in the zebrafish retina may serve more as a mechanism for the fine tuning of the retinal neuronal network after mitotic waves during development or in remaining mitotic areas than as a mechanism for eliminating large numbers of excess cells.  相似文献   

16.
NADPH-diaphorase reactivity in adult and developing cat retinae   总被引:4,自引:0,他引:4  
Summary We have examined the distribution and size of nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase reactivity in adult and developing cat retinae. From late gestation E (embryonic day) 58 to adulthood, NADPH-diaphorase reactivity was detected in amacrine cells with somata located in the inner nuclear layer (INL) and ganglion cell layer (GCL) and in processes spreading in the middle strata of the inner plexiform layer (IPL). Reactivity was also present in small rounded profiles located in the outer plexiform layer (OPL) and thought to be cone pedicles. The number of NADPH-diaphorase reactive cells present in adult retinae was about 40 000; 75% of these somata were located in the GCL, the remainder in the INL. At birth, however, there was more than double this number of labelled somata (85 000), the total gradually declining to reach adult values by P (postnatal day) 25. This loss of NADPH-diaphorase reactive somata may be partly explained by natural cell death (apoptosis) or by loss of the active diaphorase from the cells. The density distributions of NADPH-diaphorase reactive cells in the INL and GCL of retinal wholemounts reached maxima in regions slightly inferior to the area centralis at all ages studied. The principal topographical difference between adult and developing retinae was that the density gradient of NADPH-diaphorase reactive cells was steeper in adults than at younger ages. During early development, the somal and dendritic field diameters of NADPH-diaphorase reactive cells at the area centralis were about the same size as those in the periphery; by adulthood, cells in the periphery were larger. The change in the somal diameter gradient apparently emerged because of a reduction in somal size of the centrally located cells. The change in the dendritic diameter gradient emerged because of a greater growth of peripheral cells as compared to central cells. We suggest that NADPH-diaphorase may have a role in the formation of synapses in the developing IPL.  相似文献   

17.
18.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

19.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

20.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号