首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

2.
A highly sensitive and specific LC-MS/MS method has been developed for simultaneous estimation of itraconazole (ITZ) and hydroxyitraconazole (OH-ITZ) with 500 microL of human plasma using fluconazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Solid phase extraction process was used to extract ITZ, OH-ITZ and IS from human plasma. The total run time was 3.0 min and the elution of ITZ, OH-ITZ and IS occurred at 2.08 min, 1.85 min and 1.29 min, respectively; this was achieved with a mobile phase consisting of 0.2% (v/v) ammonia solution:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPurity C(18) (50 mm x 4.6 mm, 5 microm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.50 ng/mL for both ITZ and OH-ITZ. A linear response function was established for the range of concentrations 0.5-263 ng/mL (r>0.998) for both ITZ and OH-ITZ. The intra- and inter-day precision values for ITZ and OH-ITZ met the acceptance as per FDA guidelines. ITZ and OH-ITZ were stable in the battery of stability studies, viz., bench-top, auto-sampler, dry extract and freeze/thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

3.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the estimation of clonidine in human plasma. Clonidine was extracted from human plasma by using solid-phase extraction technique. Nizatidine was used as the internal standard. A Hypurity C18 (50 mm x 4.6 mm i.d., 5 microm particle size) column provided chromatographic separation of analyte followed by detection with mass spectrometry. The method involves a rapid solid-phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection up to picogram levels with a total run time of 3.0 min only. The method was validated over the range of 50-2500 pg/mL. The absolute recoveries for clonidine (71.86%) and IS (69.44%) achieved from spiked plasma samples were consistent and reproducible.  相似文献   

4.
A sensitive method using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) was developed and validated for the analysis of antihistamine drug azatadine in human plasma. Loratadine was used as internal standard (IS). Analytes were extracted from human plasma by liquid/liquid extraction using ethyl acetate. The organic phase was reduced to dryness under a stream of nitrogen at 30 °C and the residue was reconstituted with the mobile phase. 5 μL of the resulting solution was injected onto the LC-MS/MS system. A 4.6 mm × 150 mm, I.D. 5 μm, Agilent TC-C(18) column was used to perform the chromatographic analysis. The mobile phase consisted of ammonium formate buffer 0.010 M (adjusted to pH 4.3 with 1M formic acid)/acetonitrile (20:80, v/v) The chromatographic run time was 5 min per injection and flow rate was 0.6 mL/min. The retention time was 2.4 and 4.4 min for azatadine and IS, respectively. The tandem mass spectrometric detection mode was achieved with electrospray ionization (ESI) iron source and the multiple reaction monitoring (MRM) (291.3 → 248.2m/z for azatadine, 383.3 → 337.3m/z for IS) was operated in positive ion modes. The low limit of quantitation (LLOQ) was 0.05 ng/mL. The intra-day and inter-day precision of the quality control (QC) samples was 8.93-11.57% relative standard deviation (RSD). The inter-day accuracy of the QC samples was 96.83-105.07% of the nominal values.  相似文献   

5.
A precise, sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of trazodone (TRZ) and its primary metabolite, m-chlorophenylpiperazine (mCPP), in human plasma was developed and validated. The analytes and the internal standard-nefazodone were extracted from 500 microL aliquots of human plasma via liquid-liquid extraction in n-hexane. Chromatographic separation was achieved in a run time of 2.5 min on a Betabasic cyano column (100 mm x 2.1 mm, 5 microm) under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for TRZ, mCPP and IS were m/z 372.2-->176.2, 197.2-->118.1 and 470.5-->274.6 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 10.0-3000.0 ng/mL for TRZ and 0.2-60.0 ng/mL for mCPP was evaluated with mean correlation coefficient (r) of 0.9986 and 0.9990 respectively. The intra-batch and inter-batch precision (%CV) across five validation runs (LLOQ, lower limit of quantitation; LQC, low quality control; MQC, middle quality control; HQC, high quality control and ULOQ, upper limit of quantitation) was < or =8.4% for both the analytes. The method was successfully applied to a bioequivalence study of 100mg trazodone tablet formulation in 36 healthy Indian male subjects under fasting and fed conditions.  相似文献   

6.
A simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantifying sibiricaxanthone F (SF) in rat plasma following oral and intravenous dosings. After addition of the internal standard (IS) kaempferol and the antioxidant, 20% ascorbic acid, plasma samples were precipitated with acetonitrile and separated on an Aglient Zorbax XDB-C(18) column (50 mm × 4.6mm I.D., 2.1 μm) with gradient acetonitrile and water (both containing 0.01% formic acid) as the mobile phase. The detection was performed on a Sciex API 4000 LC-MS/MS with electrospray ionization (ESI) inlet in the negative multiple reaction monitoring (MRM) mode. Good linearity was achieved over the concentration range of 0.5-500.0ng/mL (r>0.996). Intra- and inter-day precisions were less than 7.60%, and accuracy ranged from 97.18% to 99.84%. The lower limit of quantification for SF was 0.5 ng/mL, and analytes were stable under various conditions (during freeze-thaw, at room temperature and under deep-freeze conditions). This validated method was successfully applied to the preliminary pharmacokinetic study of SF in rats for the first time, and the absolute bioavailability of SF was found to be only 0.22 ± 0.15%.  相似文献   

7.
A LC-MS/MS method was validated for the determination of BA011FZ041, a styrylquinoline derivative. After addition of BA011FZ055 as internal standard (IS), the method involved solid phase extraction (SPE), LC separation with an ether-phenyl column and quantification by MS/MS after positive ESI. The calibration curve, ranging from 1 to 500 ng/mL was fitted to a 1/x-weighted quadratic regression model. Lower limit of quantification (LLOQ) was 1 ng/mL using 100 microL of plasma. Intra- and inter-assay precision and accuracy values were within the regulatory limits. The method was successfully applied to the determination of BA011FZ041 in rat plasma and PBMCs after i.v. dosing.  相似文献   

8.
A rapid, specific, and reliable LC-MS/MS based bioanalytical method was developed and validated for the simultaneous determination of naloxone (NLX) and its two metabolites, 6β-naloxol (NLL) and naloxone-3β-D-glucuronide (NLG) in mouse plasma. The optimal chromatographic behavior of these analytes was achieved on an Aquasil C18 column (50 mm × 2.1 mm, 5 μm) using reversed phase chromatography. The total LC analysis time per injection was 2.5 min with a flow rate of 1.0 mL/min with gradient elution. Sample preparation via protein precipitation with acetonitrile in a 96-well format was applied for analyses of these analytes. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. Modification of collision energy besides chromatographic separation was applied to further eliminate interference peaks for NLL and NLG. The method validation was conducted over the curve range of 0.200/0.400/0.500 to 100/200/250 ng/mL for NLX/NLL/NLG, respectively, using 0.0250 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 6.5% relative standard deviation (RSD) and -8.3 to -2.5% relative error (RE). The method was successfully applied to determine the concentrations of NLX, NLL, and NLG in incurred mouse plasma samples.  相似文献   

9.
A selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the determination of cycloserine in human plasma is developed using niacin as internal standard (IS). The analyte and IS were extracted from 500 μL of human plasma via solid phase extraction on Waters Oasis MCX cartridges. Chromatographic separation was achieved on a Peerless Basic C18 (100 mm × 4.6mm, 3 μm) column under isocratic conditions. Detection of analyte and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for cycloserine and niacin were at m/z 103.1 → 75.0 and 124.1 → 80.1 respectively. The method was fully validated for its selectivity, interference check, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability and dilution integrity. The limit of detection (LOD) and lower limit of quantitation of the method were 0.0013 and 0.20 μg/mL respectively with a linear dynamic range of 0.20-30.00 μg/mL for cycloserine. The intra-batch and inter-batch precision (%CV) across six quality control levels was less than 8.0% for cycloserine. The method was successfully applied to a bioequivalence study of 250 mg cycloserine capsule formulation in 24 healthy Indian male subjects under fasting condition.  相似文献   

10.
A selective and high throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to separate, detect and simultaneously quantify lamivudine (3TC), stavudine (d4T) and nevirapine (NVP) in human plasma using metaxalone as internal standard (IS). After solid phase extraction (SPE), the analytes and the IS were chromatographed on a Symmetry C18 (150 mmx3.9 mm i.d., 5 microm particle size) column using 5 microL injection volume with a run time of 4.5 min. An isocratic mobile phase consisting of 0.5% glacial acetic acid in water:acetonitrile (20:80, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The method was validated over the range of 25-3000 ng/mL for 3TC, 20-2000 ng/mL for d4T and 50-5000 ng/mL for NVP. The absolute recoveries for analytes (>or=86%) and IS (98.12%) achieved from spiked plasma samples were consistent and reproducible. Inter-batch and intra-batch precision (%CV) across four validation runs (LLOQ, LQC, MQC and HQC) was less than 10. The accuracy determined at these levels was within +/-8% in terms of relative error. The method was successfully applied to a pivotal bioequivalence study of [60 (3TC)+12 (d4T)+100 (NVP)] mg dispersible tablets in 60 healthy human subjects under fasting condition.  相似文献   

11.
A sensitive liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of rosuvastatin in human plasma. The plasma samples were prepared using liquid-liquid extraction with ethyl ether. Chromatographic separation was accomplished on a Zorbax XDB-C18 (150 mm x 4.6 mm i.d., 5 microm) column. The mobile phase consisted of methanol-water (75:25, v/v, adjusted to pH 6 by aqueous ammonia). Detection of rosuvastatin and the internal standard (IS) hydrochlorothiazide was achieved by ESI MS/MS in the negative ion mode. The lower limit of quantification was 0.020 ng/ml by using 200 microl aliquots of plasma. The linear range of the method was from 0.020 to 60.0 ng/ml. The intra- and inter-day precisions were lower than 8.5% in terms of relative standard deviation (RSD), and the accuracy was within -0.3 to 1.9% in terms of relative error (RE). Compared with the existing methods, the validated method offered increased sensitivity. The method was successfully applied for the evaluation of pharmacokinetics of rosuvastatin after single oral doses of 5, 10 and 20 mg rosuvastatin to 10 healthy volunteers.  相似文献   

12.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify griseofulvin in human plasma using propranolol hydrochloride as internal standard (IS). Samples were prepared using solid phase extraction and analysed without drying and reconstitution. The analytes were chromatographed on Hypersil, hypurity C18 reverse phase column under isocratic conditions using 0.05% formic acid in water:acetonitrile (30:70, v/v) as the mobile phase. Total chromatographic run time was 3.0 min. Quantitation was done on a triple quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring (MRM) mode to detect parent-->product ion transition for analyte and IS. The method was validated for sensitivity, matrix effect, accuracy and precision, linearity, recovery and stability studies. Linearity in plasma was observed over the concentration range 20-3000 ng/mL for griseofulvin. Lower limit of quantification (LLOQ) achieved was 20 ng/mL with precision (CV) less than 10% using 5 microL injection volume. The absolute recovery of analyte (87.36%) and IS (98.91%) from spiked plasma samples was consistent and reproducible. Inter-batch and intra-batch coefficients of variation across four validation runs (LLOQ, LQC, MQC and HQC) was less than 7.5%. The accuracy determined at these levels was within +/-4.2% in terms of relative error. The method was applied to a pilot bioequivalence study of 500 mg griseofulvin tablet in six healthy human subjects under fed condition.  相似文献   

13.
Nifedipine (NIF), a calcium channel antagonist, is metabolized primarily by cytochrome P450 (CYP3A4) to dehydronifedipine (DNIF). As such, NIF is often used as a probe drug for determining CYP3A4 activity in human studies. A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to simultaneously determine NIF and DNIF in human plasma using nitrendipine as the internal standard (IS). After extraction of the plasma samples by ether-n-hexane (3:1, v/v), NIF, DNIF and the IS were subjected to LC/MS/MS analysis using electro-spray ionization (ESI). Chromatographic separation was performed on a Hypersil BDS C(18) column (50 mm x 2.1 mm, i.d., 3 microm). The method had a chromatographic running time of approximately 2.5 min and linear calibration curves over the concentrations of 0.5-100 ng/mL for NIF and DNIF. The recoveries of the one-step liquid extraction method were 81.3-89.1% for NIF and 71.6-80.4% for DNIF. The lower limit of quantification (LLOQ) of the analytical method was 0.5 ng/mL for both analytes. The intra- and inter-day precision was less than 15% for all quality control samples at concentrations of 2, 10, and 50 ng/mL. The validated LC/MS/MS method has been successfully used to study pharmacokinetic interactions of NIF with the herbal antidepressant St. John's wort in healthy volunteers. These results indicated that the developed LC/MS/MS method was efficient with a significantly shorter running time (2.5 min) for NIF and DNIF compared to those methods previously reported in the literature. The presented LC/MS/MS method had acceptable accuracy, precision and sensitivity and was used in a clinical pharmacokinetic interaction study of NIF with St. John's wort, a known herbal inducer of CYP3A4. St. John's wort was shown to induce NIF metabolism with increased plasma concentrations of DNIF.  相似文献   

14.
Glycyrrhizin (GLY) which has been widely used in traditional Chinese medicinal preparation possesses various pharmacological effects. In order to investigate the pharmacokinetic behavior of GLY in human after oral administration of GLY or licorice root, a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of GLY and its major metabolite glycyrrhetic acid (GA) in human plasma. The method involved a solid phase extraction of GLY, GA, and alpha-hederin, the internal standard (IS), from plasma with Waters Oasis MCX solid phase extraction (SPE) cartridges (30 mg) and a detection using a Micromass Quattro LC liquid chromatography/tandem mass spectrometry system with electrospray ionization source in positive ion mode. Separation of the analytes was achieved within 5min on a SepaxHP CN analytical column with a mobile phase of acetonitrile:water (50:50, v:v) containing 0.1% formic acid and 5mM ammonium acetate. Multiple reaction monitoring (MRM) was utilized for the detection monitoring 823--> 453 for GLY, 471--> 177 for GA and 752--> 456 for IS. The LC-MS/MS method was validated for specificity, sensitivity, accuracy, precision, and calibration function. The assay had a calibration range from 10 to 10,000 ng/mL and a lower limit of quantification of 10 ng/mL for both GLY and GA when 0.2 mL plasma was used for extraction. The percent coefficient of variation for accuracy and precision (inter-run and intra-run) for this method was less than 11.0% with a %Nominal ranging from 87.6 to 106.4% for GLY and 93.7 to 107.8% for GA. Stability of the analytes over sample processing (freeze/thaw, bench-top and long-term storage) and in the extracted samples was also tested and established.  相似文献   

15.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

16.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

17.
A liquid chromatography-mass spectrometry method (LC-MS/MS) for the quantitative determination of rifaximin in human plasma was developed and validated. In the developed procedure, metoprolol was added to human plasma as an internal standard (IS) and acetonitrile was used to precipitate the plasma proteins before LC-MS/MS analysis. Chromatographic separation was obtained on a RESTEK Pinnacle C18 column (50 mm x 2.1mm, 5 microm) with a mobile phase consisted of ammonium acetate solution (15 mM, pH 4.32) as buffer A and methanol as mobile phase B. Quantification was performed in positive mode using multiple reaction monitoring (MRM) of the transitions m/z 786.1-->754.1 for rifaximin and m/z 268.3-->116.1 for the IS. The assay has been validated over the concentration range of 0.5-10 ng/ml (r=0.9992) based on the analysis of 0.2 ml of plasma. The assay accuracy was between 98.2% and 109%. The within-day and between-day precision was better than 3.9% and 8.9% at three concentration levels. The freeze-thaw stability was also investigated and it was found that both rifaximin and the IS were quite stable. This method provides a rapid, sensitive, specific and robust tool for the quantitative determination of rifaximin in human plasma, which is especially useful for the pharmacokinetic study of rifaximin.  相似文献   

18.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

19.
A specific LC-MS/MS assay was developed for the automated determination of talinolol in human plasma, using on-line solid phase extraction system (prospekt 2) combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry. The method involved simple precipitation of plasma proteins with perchloric acid (contained propranolol) as the internal standard (IS) and injection of the supernatant onto a C8 End Capped (10 mmx2 mm) cartridge without any evaporation step. Using the back-flush mode, the analytes were transferred onto an analytical column (XTerra C18, 50 mmx4.6 mm) for chromatographic separation and mass spectrometry detection. One of the particularities of the assay is that the SPE cartridge is used as a column switching device and not as an SPE cartridge. Therefore, the same SPE cartridge could be used more than 28 times, significantly reducing the analysis cost. APCI ionization was selected to overcome any potential matrix suppression effects because the analyte and IS co-eluted. The mean precision and accuracy in the concentration range 2.5-200 ng/mL was found to be 103% and 7.4%, respectively. The data was assessed from QC samples during the validation phase of the assay. The lower limit of quantification was 2.5 ng/mL, using a 250 microL plasma aliquot. The LC-MS/MS method provided the requisite selectivity, sensitivity, robustness accuracy and precision to assess pharmacokinetics of the compound in several hundred human plasma samples.  相似文献   

20.
A rapid and sensitive LC-MS/MS method for the quantification of ondansetron was developed and validated. The plasma samples were treated by a semi-automated liquid-liquid extraction (LLE) in 1.2 mL 96-well format micro-tubes. Ondansetron and the internal standard (IS) granisetron were analyzed by combined reversed phase LC-MS/MS, with positive ion electrospray ionization, using multiple reactions monitoring (MRM). The statistical evaluation for this method reveals excellent linearity, accuracy and precision values for the range of concentrations 0.25-40.0 ng/mL. The proposed method enabled the reliable determination of ondansetron in bioequivalence studies after per os administration of a 4 or 8 mg tablet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号