首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The copK gene is localized on the pMOL30 plasmid of Cupriavidus metallidurans CH34 within the complex cop cluster of genes, for which 21 genes have been identified. The expression of the corresponding periplasmic CopK protein is strongly upregulated in the presence of copper, leading to a high periplasmic accumulation. The structure and metal-binding properties of CopK were investigated by NMR and mass spectrometry. The protein is dimeric in the apo state with a dissociation constant in the range of 10- 5 M estimated from analytical ultracentrifugation. Mass spectrometry revealed that CopK has two high-affinity Cu(I)-binding sites per monomer with different Cu(I) affinities. Binding of Cu(II) was observed but appeared to be non-specific. The solution structure of apo-CopK revealed an all-β fold formed of two β-sheets in perpendicular orientation with an unstructured C-terminal tail. The dimer interface is formed by the surface of the C-terminal β-sheet. Binding of the first Cu(I)-ion induces a major structural modification involving dissociation of the dimeric apo-protein. Backbone chemical shifts determined for the 1Cu(I)-bound form confirm the conservation of the N-terminal β-sheet, while the last strand of the C-terminal sheet appears in slow conformational exchange. We hypothesize that the partial disruption of the C-terminal β-sheet is related to dimer dissociation. NH-exchange data acquired on the apo-protein are consistent with a lower thermodynamic stability of the C-terminal sheet. CopK contains seven methionine residues, five of which appear highly conserved. Chemical shift data suggest implication of two or three methionines (Met54, Met38, Met28) in the first Cu(I) site. Addition of a second Cu(I) ion further increases protein plasticity. Comparison of the structural and metal-binding properties of CopK with other periplasmic copper-binding proteins reveals two conserved features within these functionally related proteins: the all-β fold and the methionine-rich Cu(I)-binding site.  相似文献   

2.
The prion protein (PrPc) is a cuproprotein implicated in a number of human neurodegenerative diseases. Although many physiological functions have been ascribed to PrP, its potential to act as a neuronal antioxidant, based in part on its copper binding ability, is controversial and unresolved. A number of studies have shown that copper bound to PrPc is not redox silent, and recent data shows that the Cu(II) sites at histidines 96 and 111 display reversible electrochemistry. Reversible electrochemistry implies redox cycling whilst the metal remains bound and with the absence of permanent oxidation or reduction of the protein. Despite this indirect evidence of Cu(I) binding to PrP, the nature of the Cu(I) binding site/s is unclear, although previous extended X-ray absorption fine structure (EXAFS) data has implicated methionines in the Cu(I) binding site. Using spectroscopic techniques we find that the PrP region encompassing histidines 96 and 111 can bind a Cu(I) ion in a site comprising His 96, His 111, Met 109 and Met 112. The four-coordinate (His)2(Met)2 Cu(I) site has a Kd = 10−15–10−12 M indicative of high affinity. Mutation of histidine residues reduces the Cu(I) affinity. Although alluding to the fact the PrP could act in a direct superoxide dismutase-like fashion, the Cu(I)–PrP(91–124) site and affinity is comparable to that observed for bacterial periplasmic Cu(I) transporters.  相似文献   

3.
Sco is a red copper protein that plays an essential yet poorly understood role in the metalation of the CuA center of cytochrome oxidase, and is stable in both the Cu(I) and Cu(II) forms. To determine which oxidation state is important for function, we constructed His135 to Met or selenomethionine (SeM) variants that were designed to stabilize the Cu(I) over the Cu(II) state. H135M was unable to complement a scoΔ strain of Bacillus subtilis, indicating that the His to Met substitution abrogated cytochrome oxidase maturation. The Cu(I) binding affinities of H135M and H135SeM were comparable to that of the WT and 100-fold tighter than that of the H135A variant. The coordination chemistry of the H135M and H135SeM variants was studied by UV/vis, EPR, and XAS spectroscopy in both the Cu(I) and the Cu(II) forms. Both oxidation states bound copper via the S atoms of C45, C49 and M135. In particular, EXAFS data collected at both the Cu and the Se edges of the H135SeM derivative provided unambiguous evidence for selenomethionine coordination. Whereas the coordination chemistry and copper binding affinity of the Cu(I) state closely resembled that of the WT protein, the Cu(II) state was unstable, undergoing autoreduction to Cu(I). H135M also reacted faster with H2O2 than WT Sco. These data, when coupled with the complete elimination of function in the H135M variant, imply that the Cu(I) state cannot be the sole determinant of function; the Cu(II) state must be involved in function at some stage of the reaction cycle.  相似文献   

4.
Cu(+)-ATPases drive metal efflux from the cell cytoplasm. Paramount to this function is the binding of Cu(+) within the transmembrane region and its coupled translocation across the permeability barrier. Here, we describe the two transmembrane Cu(+) transport sites present in Archaeoglobus fulgidus CopA. Both sites can be independently loaded with Cu(+). However, their simultaneous occupation is associated with enzyme turnover. Site I is constituted by two Cys in transmembrane segment (TM) 6 and a Tyr in TM7. An Asn in TM7 and Met and Ser in TM8 form Site II. Single site x-ray spectroscopic analysis indicates a trigonal coordination in both sites. This architecture is distinct from that observed in Cu(+)-trafficking chaperones and classical cuproproteins. The high affinity of these sites for Cu(+) (Site I K(a)=1.3 fM(-1), Site II K(a)=1.1 fM(-1)), in conjunction with reversible direct Cu(+) transfer from chaperones, points to a transport mechanism where backward release of free Cu(+) to the cytoplasm is largely prevented.  相似文献   

5.
The (1)H NMR solution structure of the Cu(I)-bound form of Atx1, a 73-amino acid metallochaperone protein from the yeast Saccharomyces cerevisiae, has been determined. Ninety percent of the (1)H and 95% of the (15)N resonances were assigned, and 1184 meaningful NOEs and 42 (3)J(HNH)(alpha) and 60 (1)J(HN) residual dipolar couplings provided a family of structures with rmsd values to the mean structure of 0.37 +/- 0.07 A for the backbone and 0.83 +/- 0.08 A for all heavy atoms. The structure is constituted by four antiparallel beta strands and two alpha helices in a betaalphabetabetaalphabeta fold. Following EXAFS data [Pufahl, R., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., Cizewski Culotta, V., Penner-Hahn, J. E., and O'Halloran, T. V. (1997) Science 278, 853-856], a copper ion can be placed between two sulfur atoms of Cys15 and Cys18. The structure of the reduced apo form has also been determined with similar resolution using 1252 meaningful NOEs (rmsd values for the family to the mean structure are 0.67 +/- 0.12 A for the backbone and 1.00 +/- 0.12 A for all heavy atoms). Comparison of the Cu(I) and apo conformations of the protein reveals that the Cu(I) binding cysteines move from a buried site in the bound metal form to a solvent-exposed conformation on the surface of the protein after copper release. Furthermore, copper release leads to a less helical character in the metal binding site. Comparison with the Hg(II)-Atx1 solid-state structure [Rosenzweig, A. C., Huffman, D. L., Hou, M. Y., Wernimont, A. K., Pufahl, R. A., and O'Halloran, T. V. (1999) Structure 7, 605-617] provides insights into the copper transfer mechanism, and a pivotal role for Lys65 in the metal capture and release process is proposed.  相似文献   

6.
The N-terminal metal binding extension of the Cu,Zn superoxide dismutase from Haemophilus ducreyi is constituted by a histidine-rich region followed by a methione-rich sequence which shows high similarity with protein motifs involved in the binding of Cu(I). X-ray absorption spectroscopy experiments selectively carried out with peptides corresponding to the two metal binding regions indicate that both sequences can bind either Cu(II) or Cu(I). However, competition experiments demonstrate that Cu(II) is preferred by histidine residues belonging to the first half of the motif, while the methionine-rich region preferentially binds Cu(I) via the interaction with three methionine sulfur atoms. Moreover, we have observed that the rate of copper transfer from the peptides to the active site of a copper-free form of the Cu,Zn superoxide dismutase mutant lacking the N-terminal extension depends on the copper oxidation state and on the residues involved in metal binding, histidine residues being critically important for the efficient transfer. Differences in the enzyme reactivation rates in the presence of mixtures of the two peptides when compared to those obtained with the single peptides suggest that the two halves of the N-terminal domain functionally interact during the process of copper transfer, possibly through subtle modifications of the copper coordination environment.  相似文献   

7.
Cu(II) binding to the alpha prion protein (alphaPrP) can be both intramolecular and intermolecular. X-ray absorption spectroscopy at the copper K-edge has been used to explore the site geometry under each binding mode using both insoluble polymeric Cu(II).alphaBoPrP-(24-242) (bovine PrP) complexes and soluble Cu(II) complexes of peptides containing one, two, and four copies of the octarepeat. Analysis of the extended region of the spectra using a multiple scattering approach revealed two types of sites differing in the number of His residues in the first coordination shell of Cu(II). Peptides containing one and two-octarepeat copies in sub-stoichiometric Cu(II) complexes showed the direct binding of a single His in accord with crystallographic intra-repeat geometry. Alternatively, the polymeric Cu(II).alphaBoPrP-(24-242) complex and Cu(II) in its soluble complex with a four-octarepeat peptide at half-site-occupancy showed Cu(II) directly bound to two His residues, consistent with an inter-repeat binding mode. Increasing the Cu(II) site occupancy from 0.5 to 0.75 in the peptide containing four octarepeats resulted in spectral features that are intermediate to those of the inter- and intra-repeat modes. The transition from His-Cu-His (inter-repeat) to Cu-His (intra-repeat) on increasing Cu(II) saturation offers a structural basis for the positive cooperativity of the cation binding process and explains the capacity of alphaPrP to participate in Cu(II)-mediated intermolecular interactions.  相似文献   

8.
To examine the potential role of methanobactin (mb) as the extracellular component of a copper acquisition system in Methylosinus trichosporium OB3b, the metal binding properties of mb were examined. Spectral (UV-visible, fluorescence, and circular dichroism), kinetic, and thermodynamic data suggested copper coordination changes at different Cu(II):mb ratios. Mb appeared to initially bind Cu(II) as a homodimer with a comparatively high copper affinity at Cu(II):mb ratios below 0.2, with a binding constant (K) greater than that of EDTA (log K = 18.8) and an approximate DeltaG degrees of -47 kcal/mol. At Cu(II):mb ratios between 0.2 and 0.45, the K dropped to (2.6 +/- 0.46) x 10(8) with a DeltaG degrees of -11.46 kcal/mol followed by another K of (1.40 +/- 0.21) x 10(6) and a DeltaG degrees of -8.38 kcal/mol at Cu(II):mb ratios of 0.45-0.85. The kinetic and spectral changes also suggested Cu(II) was initially coordinated to the 4-thiocarbonyl-5-hydroxy imidazolate (THI) and possibly Tyr, followed by reduction to Cu(I), and then coordination of Cu(I) to 4-hydroxy-5-thiocarbonyl imidazolate (HTI) resulting in the final coordination of Cu(I) by THI and HTI. The rate constant (k(obsI)) of binding of Cu(II) to THI exceeded that of the stopped flow apparatus that was used, i.e., >640 s(-)(1), whereas the coordination of copper to HTI showed a 6-8 ms lag time followed by a k(obsII) of 121 +/- 9 s(-)(1). Mb also solubilized and bound Cu(I) with a k(obsI) to THI of >640 s(-)(1), but with a slower rate constant to HTI (k(obsII) = 8.27 +/- 0.16 s(-)(1)), and appeared to initially bind Cu(I) as a monomer.  相似文献   

9.
Methionine-rich motifs have an important role in copper trafficking factors, including the CusF protein. Here we show that CusF uses a new metal recognition site wherein Cu(I) is tetragonally displaced from a Met2His ligand plane toward a conserved tryptophan. Spectroscopic studies demonstrate that both thioether ligation and strong cation-pi interactions with tryptophan stabilize metal binding. This novel active site chemistry affords mechanisms for control of adventitious metal redox and substitution chemistry.  相似文献   

10.
The thermodynamics of Cu(II) and Ni(II) binding to bovine serum albumin (BSA) have been studied by isothermal titration calorimetry (ITC). The Cu(II) binding affinity of the N-terminal protein site is quantitatively higher when the single free thiol, Cys-34, is reduced (mercaptalbumin), compared to when it is oxidized or derivatized with N-ethylmaleimide. This increased affinity is due predominantly to entropic factors. At higher pH (approximately 9), when the protein is in the basic (B) form, a second Cu(II) binds with high affinity to albumin with reduced Cys-34. The Cu(II) coordination has been characterized by UV-vis absorption, CD, and EPR spectroscopy, and the spectral data are consistent with thiolate coordination to a tetragonal Cu(II), indicating this is a type 2 copper site with thiolate ligation. Nickel(II) binding to the N-terminal site of BSA is also modulated by the redox/ligation state of Cys-34, with higher Ni(II) affinity for mercaptalbumin, the predominant circulating form of the protein.  相似文献   

11.
The Cu(I) binding properties of the designed peptide C16C19-GGY are reported. This peptide was designed to form an α-helical coiled-coil but modified to incorporate a Cys-X-X-Cys metal-binding motif along its hydrophobic face. Absorption, emission, electrospray ionization mass spectrometry (ESI-MS), and circular dichroism (CD) experiments show that a 1:1 Cu-peptide complex is formed when Cu(I) is initially added to a solution of the monomeric peptide. This is consistent with our earlier study in which the emissive 1:1 complex was shown to exist as a peptide tetramer containing a tetranuclear copper cluster Kharenko et al. (2005) [11]. The presence of the tetranuclear copper center is now confirmed by ESI-MS which along with UV data show that this cluster is formed in a cooperative manner. However, spectroscopic titrations show that continued addition of Cu(I) results in the occupation of a second, lower affinity metal-binding site in the metallopeptide. This occupancy does not significantly affect the conformation of the metallopeptide but does result in a quenching of the 600 nm emission. It was further found that the exogenous reductant tris(2-carboxyethyl)phosphine (TCEP) can competitively inhibit the binding of Cu(I) to the low affinity site of the peptide, but does not interact with Cu(I) clusters.  相似文献   

12.
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

13.
DeSilva TM  Veglia G  Opella SJ 《Proteins》2005,61(4):1038-1049
The coding sequence for the first N-terminal copper binding motif of the human Menkes disease protein (MNK1; residues 2-79) was synthesized, cloned, and expressed in bacteria for biochemical and structural studies. MNK1 adopts the betaalphabetabetaalphabeta fold common to all the metal binding sequences (MBS) found in other metal transport systems (e.g., the yeast copper chaperone for superoxide dismutase CCS, the yeast copper chaperone ATX1 bound to Hg(II), and most recently Cu(I), the bacterial copper binding protein, CopZ, and the bacterial Hg(II) binding protein MerP), although substantial differences were found in the metal binding loop. Similar to ATX1, MNK1 binds Cu(I) in a distorted linear bicoordinate geometry. As with MerP, MNK1 has a high affinity for both Hg(II) and Cu(I), although it displays a marked preference for Cu(I). In addition, we found that F71 is a key residue in the compact folding of MNK1, and its mutation to alanine results in an unfolded structure. The homologous residue in MerP has also been mutated with similar results. Finally, to understand the relationship between protein folding and metal affinity and specificity, we expressed a chimeric MBS with the MNK1 protein carrying the binding motif of MerP (CAAC-MNK1); this chimeric protein showed differences in structure and the dynamics of the binding site that may account for metal specificity.  相似文献   

14.
15.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

16.
Copper in the cytosol of the hepatopancreas of the American lobster, Homarus americanus, occurs as copper-metallothionein [Cu(I)-MT] and as a copper-glutathione complex [Cu(I)-GSH]. The latter can act in vitro as the source of Cu(I) in the reconstitution of lobster apohemocyanin, whereas Cu(I)-MT cannot. Here we report on the mechanism of the GSH-mediated reconstitution. Binding of Cu(I) to apohemocyanin was measured by its effect on the protein's fluorescence, by ultrafiltration experiments and size-exclusion HPLC. Reconstitution of CO and O2 binding was studied using the [Cu(I)...Cu(I)-CO] fluorescence of hemocyanin and its Cu-O2-Cu charge-transfer band as spectral probes. The hemocyanin oligomer has 1 (1.02 +/- 0.09) high-affinity (apparent Kdiss = 1.67 +/- 0.40 microM) external binding site for ionic Cu(I) per subunit. Binding of Cu(I) to this site is fast and reversible and is followed by a slow, irreversible incorporation of copper into the protein matrix. Movement of the first copper through the matrix to the active site is the rate-limiting step in the reconstitution process. Mononuclear copper sites, once formed, are rapidly converted into biologically active, binuclear copper sites. In accordance with this reaction sequence, the restoration of CO/O2 binding by hemocyanin is a first-order reaction with a half-time of 100 +/- 5 min at pH 6.0. Reconstitution is extremely pH-dependent and proceeds best at those pH values where the architecture of the copper pocket of hemocyanin is open as judged from its extremely low affinity for oxygen and its very fast oxygen dissociation rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO active site required to accommodate both oxidation states of copper have not been fully elucidated. Here, a diffraction data collection strategy minimizing the deposited x-ray dose was used to solve the crystal structure of a chitin-specific LPMO from Enterococcus faecalis (EfaCBM33A) in the Cu(II)-bound form. Subsequently, the crystalline protein was photoreduced in the x-ray beam, which revealed structural changes associated with the conversion from the initial Cu(II)-oxidized form with two coordinated water molecules, which adopts a trigonal bipyramidal geometry, to a reduced Cu(I) form in a T-shaped geometry with no coordinated water molecules. A comprehensive survey of Cu(II) and Cu(I) structures in the Cambridge Structural Database unambiguously shows that the geometries observed in the least and most reduced structures reflect binding of Cu(II) and Cu(I), respectively. Quantum mechanical calculations of the oxidized and reduced active sites reveal little change in the electronic structure of the active site measured by the active site partial charges. Together with a previous theoretical investigation of a fungal LPMO, this suggests significant functional plasticity in LPMO active sites. Overall, this study provides molecular snapshots along the reduction process to activate the LPMO catalytic machinery and provides a general method for solving LPMO structures in both copper oxidation states.  相似文献   

18.
The visible and ultraviolet circular dichroic spectra resulting from the interaction of bovine alpha-lactalbumin with successive Cu(II) ions have been recorded under a variety of conditions. Analysis of the observed change-transfer and d-d band transitions can be made in terms of two kinds of binding sites: at a histidyl group and at the N-terminal amino group, respectively. At basic pH the amide nitrogens of the peptide backbone progressively take part in the coordination. The occupation of the high affinity calcium binding site by Ca(II) and Mn(II) does not influence the Cu(II) binding process, suggesting that there is no direct interaction between this site and the Cu(II) binding sites.  相似文献   

19.
The Cu(II) center at the active site of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by Co(II) via denaturing of the protein, chelation and removal of copper by EDTA and refolding of the apo‐protein, followed by addition of an aqueous solution of CoCl2. Sitting drop vapour diffusion experiments produced green hexagonal crystals, which belong to space group P65, with unit cell dimensions a = b = 50.03, c = 98.80 Å. Diffraction data, collected at 291 K on a copper rotating anode X‐ray source, were phased by the anomalous signal of the cobalt atom. The structure was built automatically, fitted manually and subsequently refined to 1.86 Å resolution. The Co‐substituted protein exhibits similar overall geometry to the native structure with copper. Cobalt binds more strongly to the axial Met86‐Sδ and retains the tetrahedral arrangement with the four ligand atoms, His40‐Nδ1, Cys78‐Sγ, His81‐Nδ1, and 86Met‐Sδ, although the structure is less distorted than the native copper protein. The structure reported herein, is the first crystallographic structure of a Co(II)‐substituted pseudoazurin. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 202–207, 2011.  相似文献   

20.
Stellacyanin is a mucoprotein of molecular weight approximately 20,000 containing one copper atom in a blue or type I site. The metal ion can exist in both the Cu(II) and Cu(I) redox states. The metal binding site in plastocyanin, another blue copper protein, contains one cysteinyl, one methionyl, and two imidazoyl residues (Colman et al. 1978. Nature [Lond.]. 272:319-324.), but an exactly analogous site cannot exist in stellacyanin as it lacks methionine. The copper coordination in stellacyanin has been studied by x-ray edge absorption and extended x-ray absorption fine structure (EXAFS) analysis. A new, very conservative data analysis procedure has been introduced, which suggests that the there are two nitrogen atoms in the first coordination shell of the oxidized [Cu(II)] protein and one in the reduced [Cu(I)] protein; these N atoms have normal Cu--N distances: 1.95-2.05 A. In both redox states there are either one or two sulfur atoms coordinating the copper, the exact number being indeterminable from the present data. In the oxidized state the Cu--S distance is intermediate between the short bond found in plastocyanin and those found in near tetragonal copper model compounds. Above -140 degree C, radiation damage of the protein occurs. At room temperature the oxidized proteins is modified in the x-ray beam at a rate of 0.25%/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号