首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The completion of the human and mouse genomes has identified at least 20 connexin isomers in this family of intercellular channel proteins. However, there are no specific gap junction blockers or channel-blocking mimetic peptides available for the study of specific connexins. We designed antisense oligodeoxynucleotides that functionally reduce targeted connexin protein expression and can be used to reveal the biological function of individual connexins in vivo. Connexin mRNA was firstly exposed in vitro to deoxyribozymes complementing the sense coding sequence. Those that cleaved the target connexin mRNA in defined regions were used as the basis to design oligodeoxynucleotides to the accessible sites, thus taking into account tertiary mRNA configurations rather than relying on computed predictions. Antisense oligodeoxynucleotides designed to bind to accessible mRNA sites selectively reduced connexin26 and -43 mRNA expression in a corneal epithelium ex vivo model. Connexin43 protein levels were reduced correlating with the knockdown in mRNA and the protein's rapid turnover; protein levels of connexin26 did not alter, supporting lower turnover rates reported for that protein. We show, for the first time, an inexpensive and empirical approach to the preparation of specific and functional antisense oligodeoxynucleotides against known gene targets in the post-genomic era.  相似文献   

2.
The objective of this study was to evaluate the effectiveness of corneal epithelial flap removal or flap preservation during LASEK operation on myopia and to determine whether there was any accrual of benefit in either approach. From March 2006 to March 2008, some 582 patients (1,164 eyes) who presented with myopia and myopic astigmatism were treated with corrective LASEK operations. They were divided into two groups: one group underwent corneal flap-preservation while the other had the corneal flap removed. Each group comprised 582 eyes, and the data accumulated were retrospectively analyzed. Each patient was examined after 1, 3, 5, and 7 days; 2 weeks; and 1, 2, 3, 6, and 12 months after LASEK surgery to determine their post-operative visual acuity and check for complications. All eyes achieved pre-operative corrected vision 16 weeks after LASEK surgery, with no difference being observed between the two groups. However, there was a significant difference in the ophthalmalgia observed 3 days after LASEK surgery, with the flap-removal group experiencing less post-operative pain than those who had the corneal flap preserved. Furthermore, by 3 days post-operation, the observed corneal epithelial healing was significantly different: again the eyes of those who had the corneal flap removed having a faster recovery than those belonging to the corneal preservation group. In conclusion, the patients who had a flap-removal LASEK operation recorded faster recovery and suffered less ophthalmalgia, but there was no significant difference in the overall outcome in terms of post-operative optimally corrected vision or complications such as haze formation.  相似文献   

3.
We studied the normal ocular development of the chick (Gallus gallus domesticus, White Leghorn) up to 15 days of age using both longitudinal and cross-sectional methods. The change in refractive error, corneal curvature and axial ocular distances were used to construct schematic eyes. Equations are presented which allow prediction of refractive error changes associated with changes in vitreous chamber depth. The mean refractive error was +3.2 D at hatching, which reduced by 66% over the first 3 days and stabilized by 11 days of age. The lens thickened and the anterior chamber deepened from hatching, but vitreal elongation and corneal flattening were delayed until after the first 3 days, suggesting that normal eye growth may be initially inhibited or inactive during an initial emmetropization period, and subsequently activated in response to myopic defocus arising from the continually expanding lens. Finally, when compared with published data on other chick strains, we find differences in the degree of hyperopia at hatching due to differences in lens thickness. However, the rate of ocular and vitreal expansion and the developmental changes in corneal power are similar, making the schematic eyes presented here generally applicable to different strains of chickens.  相似文献   

4.
The roles of the gap junction protein connexin31.1 (Cx31.1) are poorly understood, especially as the protein appears to form non-functional channels. Cx31.1 specific antisense oligodeoxynucleotides (ODNs) were designed to evaluate its roles in a corneal epithelium model. Expression of Cx31.1 in corneal epithelium extends from the suprabasal layers of polyhedral wing cells through to the flat squamous cells of superficial layers which are shed into the tear film. Deoxyribozymes (Dzs) were tested for cleavage efficacy using in vitro transcribed Cx31.1 mRNA. Cleavage results showed a putative tertiary structure for Cx31.1 mRNA with one region appearing to have a higher potential for antisense targeting. Application of antisense ODNs designed to this region caused Cx31.1 knockdown in rat and human corneal organotypic culture models, leading to a reduction in apoptosis and a thickening of the corneal epithelium (p = 0.0045). Cx31.1 appears to play a role in triggering cell death; knocking it down may provide a novel approach for tissue repair and engineering.  相似文献   

5.
The corneal epithelium is the outermost layer of the cornea that directly faces the outside environment, hence it plays a critical barrier function. Previously, conditional loss of Notch1 on the ocular surface was found to cause inflammation and keratinization of the corneal epithelium. This was in part attributed to impaired vitamin A metabolism, loss of the meibomian glands and recurrent eyelid trauma. We hypothesized that Notch1 plays an essential role in the corneal epithelial barrier function and is a contributing factor in the pathologic changes in these mice. Notch1 was conditionally deleted in adult Notch1flox/flox, K14-Cre-ERT+/- mice using hydroxy-tamoxifen. The results indicated that conditional deletion of Notch1 on the ocular surface leads to progressive impairment of the epithelial barrier function before the onset of corneal opacification and keratinization. Loss of the barrier was demonstrated both by an increase in in vivo corneal fluorescein staining and by enhanced penetration of a small molecule through the epithelium. Corneal epithelial wounding resulted in significant delay in recovery of the barrier function in conditional Notch1-/- mice compared to wild type. Mice with conditional deletion of Notch1 did not demonstrate any evidence of dry eyes based on aqueous tear production and had normal conjunctival goblet cells. In a calcium switch experiment in vitro, Notch1-/- cells demonstrated delayed membrane localization of the tight junction protein ZO-1 consistent with a defect in the epithelial tight junction formation. These findings highlight the role of Notch1 in epithelial differentiation and suggest that intrinsic defects in the corneal epithelial barrier recovery after wounding is an important contributing factor to the development of inflammatory keratinization in Notch1-/- mice.  相似文献   

6.
The present study aimed to investigate the clinical outcomes of autologous cultivated oral mucosal epithelial transplantation (COMET) on human amniotic membrane (AM) for corneal limbal stem cell deficiency (LSCD). In this prospective, noncomparative case series, 20 eyes (18 patients) with bilateral severe ocular surface disease were chosen to undergo COMET on human AM. The primary outcome was clinical success, and the secondary outcomes were the best-corrected visual acuity difference, corneal opacification, symblepharon formation, and complications. The mean patient age was 48.2 ± 15.5 years. The mean follow-up time was 31.9 ± 12.1 months (range 8–50 months). All except one eye exhibited complete epithelialization within the first postoperative week. A successful clinical outcome, defined as a stable ocular surface without epithelial defects, a clear cornea without fibrovascular tissue invasion at the pupillary area, and no or mild ocular surface inflammation, was obtained in 15 of 20 eyes (75 %). The clinical success rate at 1 year was 79.3 %, and that at 4 years (end of follow-up) was 70.5 %. Fourteen of 20 (70 %) eyes exhibited improvement in visual acuity after COMET, and some required subsequent cataract surgery (2 eyes), penetrating keratoplasty (3 eyes), or keratoprosthesis implantation (1 eye). Preoperative symblepharon was eliminated in most eyes (8 of 13, 61.5 %) after COMET combined with eyelid reconstruction when needed. The only complication was corneal perforation (1 eye) induced by a severe eyelid abnormality; treatment with a tectonic corneal graft was successful. COMET can successfully restore ocular surface damage in most eyes with corneal LSCD.  相似文献   

7.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

8.
Dry eye disease can cause ocular surface inflammation that disrupts the corneal epithelial barrier. While dry eye patients are known to have an increased risk of corneal infection, it is not known whether there is a direct causal relationship between these two conditions. Here, we tested the hypothesis that experimentally-induced dry eye (EDE) increases susceptibility to corneal infection using a mouse model. In doing so, we also examined the role of surfactant protein D (SP-D), which we have previously shown is involved in corneal defense against infection. Scopolamine injections and fan-driven air were used to cause EDE in C57BL/6 or Black Swiss mice (wild-type and SP-D gene-knockout). Controls received PBS injections and were housed normally. After 5 or 10 days, otherwise uninjured corneas were inoculated with 109 cfu of Pseudomonas aeruginosa strain PAO1. Anesthesia was maintained for 3 h post-inoculation. Viable bacteria were quantified in ocular surface washes and corneal homogenates 6 h post-inoculation. SP-D was measured by Western immunoblot, and corneal pathology assessed from 6 h to 4 days. EDE mice showed reduced tear volumes after 5 and 10 days (each by ∼75%, p<0.001) and showed fluorescein staining (i.e. epithelial disruption). Surprisingly, there was no significant difference in corneal pathology between EDE mice and controls (∼10–14% incidence). Before bacterial inoculation, EDE mice showed elevated SP-D in ocular washes. After inoculation, fewer bacteria were recovered from ocular washes of EDE mice (<2% of controls, p = 0.0004). Furthermore, SP-D knockout mice showed a significant increase in P. aeruginosa corneal colonization under EDE conditions. Taken together, these data suggest that SP-D contributes to corneal defense against P. aeruginosa colonization and infection in EDE despite the loss of barrier function to fluorescein.  相似文献   

9.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

10.
The aim of this study was to test the use of BioCornea, a fish scale-derived collagen matrix for sealing full-thickness corneal perforations in mini-pigs.Two series of experiments were carried out in 8 Lan-Yu and 3 Göttingen mini-pigs, respectively. A 2mm central full thickness corneal perforation was made with surgical scissors and 2mm trephines. The perforations were sealed immediately by suturing BioCornea to the wounded cornea. The conditions of each patched cornea were followed-up daily for 3 or 4 days. Status of operated eyes was assessed with slit lamp examination or optical coherence tomography (OCT). Animals were sacrificed after the study period and the corneas operated were fixated for histological examination.Both OCT imaging and handheld slit lamp observations indicated that a stable ocular integrity of the perforated corneas was maintained, showing no leakage of aqueous humor, normal depth of anterior chamber and only mild swelling of the wounded cornea. Hematoxylin and eosin staining of the patched cornea showed no epithelial ingrowths to the perforated wounds and no severe leucocyte infiltration of the stroma.The fish scale-derived BioCornea is capable to seal full-thickness corneal perforation and stabilize the integrity of ocular anterior chamber in pre-clinic mini-pig models. BioCornea seems to be a safe and effective alternative for emergency treatment of corneal perforations.  相似文献   

11.

Purpose

This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding.

Methods

Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs.

Results

The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining.

Conclusions

Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.  相似文献   

12.
Disorders of wound healing characterized by impaired or delayed re-epithelialization are a serious medical problem. These conditions affect many tissues, are painful, and are difficult to treat. In this study, using cornea as a model, we demonstrate for the first time the importance of carbohydrate-binding proteins galectins-3 and -7 in re-epithelialization of wounds. In two different models of corneal wound healing, re-epithelialization of wounds was significantly slower in galectin-3-deficient (gal3(-/-)) mice compared with wild-type (gal3(+/+)) mice. In contrast, there was no difference in corneal epithelial wound closure rates between galectin-1-deficient and wild-type mice. Quantitation of the bromodeoxyuridine-labeled cells in gal3(+/+) and gal3(-/-) corneas revealed that corneal epithelial cell proliferation rate is not perturbed in gal3(-/-) corneas. Exogenous galectin-3 accelerated re-epithelialization of wounds in gal3(+/+) mice but, surprisingly, not in the gal3(-/-) mice. Gene expression analysis using cDNA microarrays revealed that healing corneas of gal3(-/-) mice contain markedly reduced levels of galectin-7 compared with those of gal3(+/+) mice. More importantly, unlike galectin-3, galectin-7 accelerated re-epithelialization of wounds in both gal3(-/-) and gal3(+/+) mice. In corresponding experiments, recombinant galectin-1 did not stimulate the corneal epithelial wound closure rate. The extent of acceleration of re-epithelialization of wounds with both galectin-3 and galectin-7 was greater than that observed in most of the published studies using growth factors. These findings have broad implications for developing novel therapeutic strategies for treating nonhealing wounds.  相似文献   

13.
Preserved human amniotic membrane (AM) is currently being used for a wide spectrum of ocular surface disorders. The AM has a basement membrane, which promotes epithelial cell migration and adhesion. The presence of a unique avascular stromal matrix reduces inflammation, neovascularization and fibrosis. The basic tenets of amniotic membrane transplantation (AMT) are to promote re-epithelialization, to reconstruct the ocular surface and to provide symptomatic relief from surface aberrations. AMT is a useful technique for reconstruction of surface defects resulting from removal of surface tumors and symblephara. AMT has effectively restored a stable corneal epithelium in eyes with, persistent epithelial defects and corneal ulcers. In the setting of acute ocular burns and SJS, AMT has satisfactorily reduced scarring and inflammation. AMT alone may be an effective alternative for partial limbal stem cell deficiency. However remarkable improvements in surface stability have resulted from concurrent AMT and limbal stem cell transplantation, wherein the limbal grafts are obtained from the normal fellow eye, living relative or cadaveric eye. In severe or bilateral cases, well being of the donor eye is a major concern. Currently, the most unique application of preserved human AM in ophthalmology is its use as a substrate for ex-vivo expansion of corneal and conjunctival epithelium. In this novel technique of tissue engineering, epithelial stem cells can be safely harvested and expanded on denuded AM. The resultant composite cultured tissue has been successfully transplanted to restore vision, as well as the structure and function of damaged ocular surfaces.  相似文献   

14.
The spatial and temporal patterns of expression of connexin 26, connexin 32 and connexin 43 were investigated in rat uterus at days 17, 19 and 22 of pregnancy and during delivery (23 days) by immunocytochemistry, Gap junctions, which are essential for the development of labour, are known to undergo rapid increase in the rat myometrium at the end of pregnancy. The expression of connexin 43, the major myometrial gap junction protein, was low throughout pregnancy but increased immediately before the onset of labour (day 22). It was found predominantly in the myometrium, although limited staining was also apparent in the stroma. Immunolabelling revealed the presence of connexins 26 and 32 in uterine luminal epithelial cells on days 17 and 19 of pregnancy, with a marked increase in connexin 26 expression at days 19, 22 and 23; however, marked expression of connexin 32 was apparent only at day 23. No immunoreactivity for either connexin 26 or 32 was found in myometrial cells at any stage of pregnancy. We conclude, contrary to other recent reports, that connexin 26 is not a gap junction protein of the rat myometrial smooth muscle cell. © 1998 Chapman & Hall  相似文献   

15.
Gap junctional communication is involved in embryogenesis, cell growth control, and coordinated contraction of cardiac myocytes. It has been hypothesized that gap junctions coordinate responses of vascular cells to constrictor or dilator stimulation. Three connexin (Cx) proteins, 37, 40, and 43, are found in the vasculature. Cx43 gap junctions are widely distributed along the vascular tree, although a precise physiologic role in vascular function is unknown because of a lack of specific functional inhibitors and of suitable animal models. To investigate the role of Cx43 in intercellular communication among vascular smooth muscle (VSM) cells, we selectively modified the expression of the Cx43 gene using antisense cDNA stable transfections in culture. Results show that in cells stably transfected with antisense Cx43 cDNA, gene expression of Cx43 could be reduced to 20% of that observed in vector-transfected cells. In spite of the mRNA and protein reduction, the antisense Cx43 cDNA-transfected cells did not show a significant reduction in dye transfer or a difference in cell growth rate as compared with control. These results suggest either that the residual amount of Cx43 protein is sufficient for dye transfer and growth control or that the dye transfer in these cells can be mediated by Cx40 or other connexin proteins. Therefore, more potent approaches, such as dominant negative and gene knockout, are required to fully block gap junctional communication in VSM cells.  相似文献   

16.

Purpose

Gap junction intercellular communication (GJIC) plays a critical role in the maintenance of corneal endothelium homeostasis. We determined if benzalkonium chloride (BAK) alters GJIC activity in the rabbit corneal endothelium since it is commonly used as a drug preservative in ocular eyedrop preparations even though it can have cytotoxic effects.

Methods

Thirty-six adult New Zealand albino rabbits were randomly divided into three groups. BAK at 0.01%, 0.05%, and 0.1% was applied twice daily to one eye of each of the rabbits in one of the three groups for seven days. The contralateral untreated eyes were used as controls. Corneal endothelial morphological features were observed by in vivo confocal microscopy (IVCM). Immunofluorescent staining resolved changes in gap junction integrity and localization. Western blot analysis and RT-PCR evaluated changes in levels of connexin43 (Cx43) and tight junction zonula occludens-1 (ZO-1) gene and protein expression, respectively. Cx43 and ZO-1 physical interaction was detected by immunoprecipitation (IP). Primary rabbit corneal endothelial cells were cultured in Dulbecco''s Modified Eagle Medium (DMEM) containing BAK for 24 hours. The scrape-loading dye transfer technique (SLDT) was used to assess GJIC activity.

Results

Topical administration of BAK (0.05%, 0.1%) dose dependently disrupted corneal endothelial cell morphology, altered Cx43 and ZO-1 distribution and reduced Cx43 expression. BAK also markedly induced increases in Cx43 phosphorylation status concomitant with decreases in the Cx43-ZO-1 protein-protein interaction. These changes were associated with marked declines in GJIC activity.

Conclusions

The dose dependent declines in rabbit corneal endothelial GJIC activity induced by BAK are associated with less Cx43-ZO-1 interaction possibly arising from increases in Cx43 phosphorylation and declines in its protein expression. These novel changes provide additional evidence that BAK containing eyedrop preparations should be used with caution to avoid declines in corneal transparency resulting from losses in GJIC activity and endothelial function.  相似文献   

17.
Objective: To evaluate the efficacy of preserved human amniotic membrane transplantation for reconstruction of the corneal surface diseases. Methods: Preserved human amniotic membrane transplantations were performed in 84 eyes of 78 patients for corneal surface reconstruction. The indications were limbal stem cell deficiency from Steven–Johnson syndrome, chemical burn and herpes keratitis (27 eyes), bullous keratopathy (26 eyes), persistent epithelial defect and dellen (17 eyes), band keratopathy (11 eyes), preparing for prosthesis (1 eye), corneal ulcer (1 eye) and acute chemical burn (1 eye). Results: Success was noted in 83.3% (70/84) eyes, partial success in 13.1% (11/84) eyes, and failure in 3.6% (3/84) eyes for an average follow-up of 10.5 months (3 – 29 months). No patient developed major immediate post-operative complications. Conclusion: Amniotic membrane transplantation can reduce inflammation, promote corneal epithelial healing, and decrease irritation in corneal surface problems.  相似文献   

18.
It is generally accepted that high osmotic pressure (HOP) of lacrimal fluid is the core mechanism causing ocular inflammation and injury. However, the association between HOP and the regulation of cell inflammatory response and apoptotic pathways remains unclear. In the present study, we used HOP to interfere with in vitro cultured rabbit corneal epithelial cells, and found that HOP increased the generation of reactive oxygen species (ROS) in rabbit corneal epithelial cells, and increased ROS in turn induced the activation of JNK inflammatory signaling pathway, which further promoted the expression of pro-inflammatory factor NF-κβ and induced the generation of inflammatory factor IL-1β and TNF-α. In addition, HOP-induced ROS in rabbit corneal epithelial cells regulated the CD95/CD95L-mediated cell apoptotic signaling pathway by activating JNK inflammatory signaling pathway. These findings may serve as new theoretical basis and a new way of thinking about the treatment of ocular diseases, especially dry eye.  相似文献   

19.
This study was undertaken to explore the role of complement regulatory proteins (CRPs) in experimental autoimmune anterior uveitis (EAAU). We observed that the levels of CRPs, Crry and CD59, in the eyes of Lewis rats increased during EAAU and remained elevated when the disease resolved. The in vivo role of these CRPs in EAAU was explored using neutralizing mAbs, antisense oligodeoxynucleotides (AS-ODNs), and small interfering RNAs against rat Crry and CD59. Suppression of Crry in vivo at days 9, 14, or 19 by neutralizing mAb or AS-ODNs resulted in the early onset of disease, the exacerbation of intraocular inflammation, and delayed resolution. Suppression of CD59 was only effective when the Abs and ODNs were given before the onset of disease. The most profound effect on the disease was observed when a mixture of Crry and CD59 mAbs or AS-ODNs was administered. A similar effect was observed with a combination of Crry and CD59 small interfering RNA. There was no permanent histologic damage to ocular tissue after the inflammation cleared in these animals. Increased complement activation as determined by increased deposition of C3, C3 activation fragments, and membrane attack complex was observed in the eyes of Lewis rats when the function and/or expression of Crry and CD59 was suppressed. Thus, our results suggest that various ocular tissues up-regulate the expression of Crry and CD59 to avoid self-injury during autoimmune uveitis and that these CRPs play an active role in the resolution of EAAU by down-regulating complement activation in vivo.  相似文献   

20.
Angiogenesis is regulated by heparin-binding growth factors, such as basic fibroblast growth factor (bFGF). We investigated the effects of phosphorothioate-mediated oligodeoxynucleotides (PS-ODN) on bFGF-induced angiogenesis. Because PS-ODN are polyanions, they can also bind many heparin-binding proteins. On a basement matrix using a Matrigel matrix, we observed <50% tube formation by human umbilical endothelial cells with 10 microM bFGF, vascular endothelial growth factor, or nuclear factor-kappaB (NF-kappaB) antisense and sense PS-ODN, while phosphodiester oligodeoxynucleotides (PO-ODNs) were not affected. The PS-ODN, but not the PO-ODN, inhibited the bFGF-induced rabbit corneal neovascularization. In albino rats, the NF-kappaB antisense PS-ODN showed a low rescue score for bFGF-dependent photoreceptor rescue because of their degradation by constant light exposure. However, antisense PS-ODN active against bFGF inhibited angiogenesis more strongly than did the antisense NF-kappaB PS-ODN. Because of the important role bFGF plays in angiogenesis, some PS-ODN may serve as potent antiangiogenic compounds that act through a combination of polyanionic phosphorothioate effects and a sequence-specific antisense mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号