首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This clinical methods comparison study describes the difference between light levels measured at the wrist (Actiwatch-L) and at the eye (Daysimeter) in a postoperative in-patient population. The mean difference between the two devices was less than 10 lux at light levels less than 5000 lux. Agreement between the devices was found to decrease as eye-level light exposure increased. Measurements at eye level of 5000 lux or more corresponded to a difference between the devices of greater than 100 lux. Agreement between the eye- and wrist-level light measurements also appears to be influenced by time of day. During the day, the measurement differences were on average 50 lux higher at eye level, whereas at night they were on average 50 lux lower. Although the wrist-level monitor was found to underestimate light exposure at higher light levels, it was well tolerated by participants in the clinical setting. In contrast, the eye-level monitor was cumbersome and uncomfortable for the patients to wear. This study provides light-exposure data on patients in real conditions in the clinical environment. The results show that wrist-level monitoring provides an adequate estimate of light exposure for in-hospital circadian studies. (Author correspondence: )  相似文献   

2.
The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.  相似文献   

3.
This study was designed to examine the effect of exposure to two levels of light intensity (bright; 5000 lux, dim; 50 lux) prior to supramaximal cycle exercise on performance and metabolic alterations. The exercise was performed after bright and dim light exposure for 90 minutes. Ten male long-distance runners volunteered to take part in the study. They performed 45-sec supramaximal exercise using a cycle ergometer in a 500-lux. Mean power output was measured during the exercise. Lactate and ammonia in the blood and epinephrine and norepinephrine concentrations in plasma were measured at rest immediately after bright and dim light exposures and after the exercise. Bright and dim light exposure prior to exercise did not significantly affect the power output during the exercise. Blood glucose concentration immediately after exercise and plasma epinephrine during the resting period were significantly lower after bright light exposure compared with dim light exposure (p < 0.05). No significant difference was found in blood lactate, ammonia, or plasma norepinephrine levels after exercise following bright and dim light exposures. This study demonstrated that bright light stimulation prior to supramaximal exercise decreases glucose and epinephrine levels, but is not related to physical performance.  相似文献   

4.
Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.  相似文献   

5.
The effects of bright light exposure during the daytime on circadian urinary melatonin and salivary immunoglobulin A (IgA) rhythms were investigated in an environmental chamber controlled at a global temperature of 27°C ± 0.2°C and a relative humidity of 60% ± 5%. Seven diurnally active healthy females were studied twice, in bright and dim light conditions. Bright light of 5000 lux was provided by placing fluorescent lamps about 1 meter in front of the subjects during the daytime exposure (06:30-19:30) from 06:30 on day 1 to 10:30 on day 3. Dim light was controlled at 200 lux, and the subjects were allowed to sleep from 22:30 to 06:30 under both light exposure conditions. Urine and saliva were collected at 4h intervals for assessing melatonin and IgA. Melatonin excretion in the urine was significantly greater during the nighttime (i.e., at 06:30 on day 1 and at 02:30 on day 2) after the bright light condition than during the dim light condition. Furthermore, the concentration and the amount of salivary IgA tended to be higher in the bright light than in the dim light condition, especially during the nighttime. Also, salivary IgA concentration and the total amount secreted in the saliva were significantly positively correlated with urinary melatonin. These results are consistent with the hypothesis that bright light exposure during the daytime enhances the nocturnal melatonin increase and activates the mucosal immune response.  相似文献   

6.
Previous studies have shown that bright light (2500 lux) suppresses nocturnal secretion of melatonin, while dim light (500 lux) has little or no effect. We have studied the effect of varying intensities of light on 5 normal male volunteers (age 18-28). The experiment was divided into 3 parts which took place at weekly intervals. Subjects remained under artificial light (fluorescent strip 150-250 lux) between 2000 h-2300 h, they then retired to bed in darkness. On each occasion, between 0030 h and 0100 h, the subjects were required to get up and were treated with light of different intensities; (a) less than 1 lux, (b) 300 lux and (c) 2500 lux respectively. Subjects returned to bed in darkness until 0700 h. Blood was sampled hourly from 2000 h-1000 h with additional samples at 2330 h, 0015 h, 0030 h, 0045 h, 0115 h and 0130 h. Plasma melatonin and 6-sulphatoxymelatonin (aMT6s), the major melatonin metabolite, were measured by radioimmunoassay. Dim (300 lux) and bright (2500 lux) light, both significantly suppressed melatonin levels compared to less than 1 lux (P less than 0.05 and P less than 0.01 respectively) at the following time points 0100 h, 0115 h and 0130 h. One subject did not show suppression with 300 lux. There was also a significant suppression of aMT6s levels, compared to less than 1 lux, after both 300 lux and 2500 lux at 0115 h (P less than 0.05, P less than 0.01), 0130 h (P less than 0.01, P less than 0.01) and 0200 h (P less than 0.01, P less than 0.001) respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Quantal melatonin suppression by exposure to low intensity light in man   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were examined following three relatively low intensities of artificial light. Six normal, healthy control subjects were all exposed to (a) 200 lux, (b) 400 lux and (c) 600 lux for a three hour duration from midnight to 0300 h. Blood was also collected on a control night where light intensity was less than 10 lux throughout. Significant suppression of melatonin was observed following light of 400 lux and 600 lux intensity when compared to the control night (p less than 0.05; Mann-Whitney U-test). 200 lux light did not produce a statistically significant melatonin suppression when compared with control samples. Each light intensity produced its own individual maximal melatonin suppression by one hour of exposure. Increased duration of exposure to the light had no further influence on melatonin plasma concentrations. These data confirm a dose response relationship between light and melatonin suppression, and indicate that there is no reciprocal relationship between the effects of light intensity and the duration of exposure on maximal melatonin suppression in man.  相似文献   

8.
Bright artificial light produces subsensitivity to nicotine   总被引:1,自引:0,他引:1  
Bright artificial light is a treatment for seasonal depression. Eleven (11) rats were exposed to bright artificial light (11,500 lux) for two consecutive weeks. The thermic response to nicotine was measured prior to light exposure and after one and two weeks of treatment. The thermic response to nicotine at baseline was -1.69 +/- 0.25 degrees C (mean +/- SEM). The thermic response to nicotine was -0.66 +/- 0.12 degrees C (p less than 0.002) after one and +0.31 +/- 0.14 degrees C (p less than 0.000025) after two weeks of light exposure. The change in temperature was different between weeks one and two (p less than 0.000025). The exposure of animals to constant light at an intensity of 300 lux did not blunt the hypothermic response to nicotine. These findings suggest that bright artificial light, like other antidepressant treatments, produces subsensitivity of a nicotinic mechanism involved in the regulation of core temperature.  相似文献   

9.
The purpose of the present study was to elucidate the existence of individual differences of pupil response to light stimulation, and to confirm the reproducibility of this phenomenon. Furthermore, the relationship between the individual differences in nocturnal melatonin suppression induced by lighting and the individual differences of pupillary light response (PLR) was examined. The pupil diameter and salivary melatonin content of 20 male students were measured at the same period of time (00:00-02:30 hr) on different days, accordingly. Illumination (530 nm) produced by a monochromatic light-emitting diode (LED) was employed as the light stimulation: pupil diameter was measured with 4 different levels of illuminance of 1, 3, 30 and 600 lux and melatonin levels were measured at 30 and 600 lux (respective controls were taken at 0 lux). Oral temperature, blood pressure and subjective index of sleepiness were taken in experiments where melatonin levels were measured. Changes of the pupil diameter in response to light were expressed as PLR and light-induced melatonin suppression was expressed as a control-adjusted melatonin suppression score (control-adjusted MSS), which was compared to the melatonin level measured at 0 lux. In the PLR, the coefficients of variation obtained at 30 lux or less were large (51.5, 45.0, 28.4 and 6.2% at 1, 3, 30 and 600 lux, respectively). Correlations of illuminance of any combination at 30 lux or less were statistically significant at less than 1% level (1 vs. 3 lux: r=0.68; 1 vs. 30 lux: r=0.64; 3 vs. 30 lux: r=0.73), which showed the reproducibility of individual differences. The control-adjusted MSS at 600 lux (-1.14+/-1.16) was significantly (p<0.05) lower than that registered at 30 lux (-0.22+/-2.12). PLR values measured at 30 and 600 lux were then correlated with control-adjusted MSS; neither indicated a significant linear relationship. However, the control-adjusted MSS showed around 0 under any of the illuminance conditions in subjects with high PLR. In control-adjusted MSS of low values (i.e., melatonin secretions were easily suppressed), subjects indicated typically low PLR. In subjects with low control-adjusted MSS (n=3), characteristic changes in the autonomic nervous system, such as body temperature and blood pressure, were noted in subjects exposed to low illuminance of 30 lux. The fact that the relationship between PLR and control-adjusted MSS portray a similar pattern even under different luminance conditions suggests that MSS may not be affected in those with high PLR at low illuminance, regardless of the illuminance condition.  相似文献   

10.
The light preferences of fruit flies were tested by 2 different means. First, flies were allowed to choose between different illuminations, and their favorite resting, grooming, and feeding places were determined with an infrared-sensitive camera. Second, the activity levels of the animals during their main daily activity period were determined photoelectrically (via infrared light beams) under different light intensities. Both methods revealed that the flies prefer dim light. They rested, groomed, and fed preferentially in places with a light intensity between 5 and 10 lux, and they showed the highest activity level when the light intensity during the day was kept at 10 lux. Furthermore, when dawn and dusk were simulated by logarithmically increasing/decreasing the light intensity during a 1.5-h interval, the flies' activity maxima occurred at about 7.5 lux during early dawn and late dusk. The results suggest that fruit flies time their clocks by early dawn and late dusk and avoid bright light during the day.  相似文献   

11.
The authors compared the therapeutic effect of morning bright and dim light exposure on rest-activity (R-A) rhythm disorders in patients with vascular dementia (VD) and patients with dementia of Alzheimer's type (DAT). Participants in this study were 12 patients with VD (M/F = 5/7; average age = 81 years) and 10 patients with DAT (M/F = 4/6; average age = 78 years). They were exposed to 2 weeks of bright light (BL; 5000-8000 lux) and 2 weeks of dim light (DL; 300 lux) in the morning (09:00-11:00) in a randomized crossover design in which the 2-week treatment period took place between pretreatment (1 week) and posttreatment (1 week) periods. Continuous R-A monitoring was performed at 1-minute intervals throughout the study using an actigraph around the nondominant wrist. The BL exposure for 2 weeks induced a significant reduction in both nighttime activity and percentages of nighttime activity to total activity compared with the pretreatment period, as well as compared with the DL condition in the VD group, but not in the DAT group. These findings support the assumption that the therapeutic efficacies of morning BL exposure are prominent in VD patients and are mainly due to its photic effect rather than nonphotic effects such as the intensification of social interaction accompanying light therapy. (Chronobiology International, 15(6), 647-654, 1998)  相似文献   

12.
The behaviour of the lesser sandeel, Ammodytes marinus (Raitt), has been investigated at light intensities of 1, 10, 100 and 1000 lux, using a photographic method of recording activity. The level of swimming activity was high at 1000 and 100 lux, declining to a very low level at 1 lux. It was concluded that this was due to the limiting effect of light on feeding. The threshold light intensity for swimming activity in the tank was estimated as being approximately 20 lux but it was considered that in the area of the sandeel fishing grounds the threshold might be higher than this, in the region of 100 lux. The number of hours light per day above 20 and 100 lux at a depth of 15 m in the area of the Outer Dowsing sandbank (53°30'N, 01°00'E) was estimated for the various months of the year. It was shown that during the winter the light intensity does not normally reach 100 lux and only exceeds 20 lux for a few hours each day. It is suggested that this could limit swimming activity and accessibility at this time of year. Measurements were made of the penetration of light into sand and it was concluded that fish which are buried might be able to detect light, possibly via the pineal gland.  相似文献   

13.
The illuminance threshold for maintenance of testicular function was found to be considerably higher in Syrian hamsters kept in continuous light (LL) than in hamsters on long-day (14-hr) photoperiods (LD 14:10), or in a similar-length skeleton photoperiod (LDSK); the threshold lay between 3 and 30 lux in LL and at approximately 0.3 lux in LD 14:10 or LDSK. The threshold for testicular maintenance in LL was related to the capacity of LL to suppress nocturnal melatonin secretion: 400 lux totally suppressed, 30 or 3 lux partially suppressed, and 0.3 lux failed to suppress melatonin secretion. Hamsters in the LD and LDSK groups, whose locomotion was entrained into a pattern characteristic of long-day exposure, maintained full testicular function; those whose locomotion free-ran or assumed a pattern of entrainment characteristic of short-day exposure underwent testicular regression. These results suggest that light signals entrain the circadian rhythms of locomotion and melatonin secretion in a similar manner, and that LL is less effective than LD or LDSK in shortening the duration of melatonin secretion. For hamsters in LL, a direct relationship was seen between the free-running period (tau) of locomotion and log10 illuminance at 0.3, 3.0, and 30 lux, but tau at 400 lux was no longer than tau at 30 lux. Splitting of locomotion did not occur at 0.3 or 3.0 lux, and occurred in 43% and 62% of hamsters in 30 and 400 lux, respectively.  相似文献   

14.
Students who work during the school year face the potential of sleep deprivation and its effects, since they have to juggle between school and work responsibilities along with social life. This may leave them with less time left for sleep than their nonworking counterparts. Chronotype is a factor that may exert an influence on the sleep of student workers. Also, light and social zeitgebers may have an impact on the sleep-related problems of this population. This study aimed to document sleep, light exposure patterns, social rhythms, and work-related fatigue of student workers aged 19-21 yrs and explore possible associations with chronotype. A total of 88 student workers (mean ± SD: 20.18 ± .44 yrs of age; 36 males/52 females) wore an actigraph (Actiwatch-L; Mini-Mitter/Respironics,Bend, OR) and filled out the Social Rhythm Metric for two consecutive weeks during the school year. Also, they completed the Morningness-Eveningness Questionnaire (MEQ), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), and Occupational Fatigue Exhaustion/Recovery Scale (OFER). Repeated and one-way analyses of variance (ANOVAs), Pearson's chi-square tests, and correlation coefficients were used for statistical comparisons. Subjects slept an average of 06:28 h/night. Actigraphic sleep parameters, such as sleep duration, sleep efficiency, wake after sleep onset, and sleep latency, did not differ between chronotypes. Results also show that evening types (n = 17) presented lower subjective sleep quality than intermediate types (n = 58) and morning types (n = 13). Moreover, evening types reported higher levels of chronic work-related fatigue, exhibited less regular social rhythms, and were exposed to lower levels of light during their waking hours (between 2 and 11 h after wake time) as compared to intermediate types and morning types. In addition, exposure to light intensities between 100 and 500 lux was lower in evening types than in intermediate types and morning types. However, bright light exposure (≥ 1000 lux) did not differ between chronotypes. In conclusion, results suggest that student workers may constitute a high-risk population for sleep deprivation. Evening types seemed to cope less well with sleep deprivation, reporting poorer sleep quality and higher levels of work-related fatigue than intermediate types and morning types. The higher chronic work-related fatigue of evening types may be linked to their attenuated level of light exposure and weaker social zeitgebers. These results add credence to the hypothesis that eveningness entails a higher risk of health-impairing behaviors.  相似文献   

15.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L=20 lux, D =0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period ( ~ 24 h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46 (+/-) 0.41 h (mean???SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52 (+/-) 0.70 h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24 h.  相似文献   

16.
Effects of duration and intensity of illumination on eye weight, eye diameter, corneal diameter and anterior chamber depth were investigated in Warren chicks. Increase in eye weight was observed in continuous light, LD 22:2 and continuous darkness. Shallow anterior chamber and small corneal diameter were observed in continuous light and LD 22:2, but not in continuous darkness. Continuous bright light (5000 lux) did not induce an increase in the eye weight but instead induced severe lesions in the anterior segment of the eye. Injection of corticosterone (500 micrograms) induced a significant reduction in the eye weight.  相似文献   

17.
Melatonin and light synchronize the biological clock and are used to treat sleep/wake disturbances in humans. However, the two treatments affect circadian rhythms differently when they are combined than when they are administered individually. To elucidate the nature of the interaction between melatonin and light, the present study assessed the effect of melatonin on circadian timing and immediate-early gene expression in the suprachiasmatic nucleus (SCN) when administered in the presence of light. Male C3H/HeN mice, housed in constant dark in cages equipped with running wheels, were treated with either melatonin (90 microg, s.c.) or vehicle (3% ethanol-saline) 5 min prior to exposure to light (15 min, 300 lux) at various times in the circadian cycle. Combined treatment resulted in lower magnitude phase delays of circadian activity rhythms than those obtained with light alone during the early subjective night and advances in phase when melatonin and light were administered during the subjective day (p < .001). The reduction in phase delays with combined treatment at Circadian Time (CT) 14 was significant when light exposure measured 300 lux but not at lower light levels (p < .05). When light preceded melatonin administration, the inhibition of phase delays attained significance only when the light exposure reached 1000 lux (p < .05). Neither basal nor light-induced expression of c-fos mRNA in the SCN was modified by melatonin administration at CT 14 or CT 22. Together, these results suggest that combined administration of melatonin and light affect circadian timing in a manner not predicted by summing the two treatments given individually. Furthermore, the interaction is not likely to be due to inhibition of photic input to the clock by melatonin but might arise from a photically induced enhancement of melatonin's actions on circadian timing.  相似文献   

18.
The aim of the present study was to investigate the effect of exposure to differing light intensities for several hours during the daytime on the cutaneous vasodilatation and local forearm sweat rate induced by exercise. Seven healthy female subjects were exposed to bright light of 6000 lux (bright) or dim light of 100 lux (dim) during the daytime between 0900 hours to 1330 hours, followed by exposure to 150 lux until the test was over at 1600 hours. They spent their time in neutral conditions (29°C, 40% relative humidity) from 0900 hours to 1500 hours, and then exercised on a cycle ergometer for 30 min at 50% maximal physical work capacity. Average tympanic temparatures were significantly lower in bright than in dim from 1133 hours to 1430 hours. The onset of cutaneous vasodilatation and local forearm sweating occurred at significantly lower tympanic temperature (T ty) during exercise after bright than after dim. After exercise, the cessation of forearm sweating and the rapid change of skin blood flow occurred at significantly lower T ty after bright than after dim. It was concluded that exposure to bright light over several hours during the daytime could reduce T ty and shift the threshold T ty for cutaneous vasodilatation and forearm sweating to a lower level. Accepted: 30 March 1998  相似文献   

19.
ABSTRACT

Previous studies have found that keeping the room dark at night was associated with a decrease in manic symptoms for patients with bipolar disorder (BD). However, the association between light at night of real-life conditions and manic symptoms is unclear. We investigated the association between bedroom light exposure at night and manic symptoms in BD patients. One-hundred and eighty-four outpatients with BD participated in this cross-sectional study. The average light intensity at night during sleep was evaluated using a portable photometer for seven consecutive nights. Manic symptoms were assessed using the Young Mania Rating Scale (YMRS), and scores ≥5 were treated as a “hypomanic state.” The median (interquartile range) YMRS score was 2.0 (0–5.0), and 52 (28.2%) participants were in a hypomanic state. The prevalence of a hypomanic state was significantly higher in the participants with an average light intensity at night exposure of ≥3 lux than in those with <3 lux (36.7% versus 21.9%; P = .02). In multivariable logistic regression analysis adjusted for BD type, depressive symptoms, sleep duration, and daytime physical activity, the odds ratio (OR) for a hypomanic state was significantly higher for the participants with an average light intensity at night exposure of ≥3 lux than for those with <3 lux (OR: 2.15, 95% confidence interval: 1.09–4.22, P = .02). This association remained significant at the cutoff value of YMRS score ≥6 (OR: 2.51, 95% confidence interval: 1.15–5.46; P = .02). The findings of this study indicate bedroom light exposure at night is significantly associated with manic symptoms in BD patients. Although the results of this cross-sectional investigation do not necessarily imply causality, they may serve to inform beneficial nonpharmacological intervention and personalized treatment of BD patients.  相似文献   

20.
This experiment tested effects of human eye pigmentation depending on the ethnicity on suppression of nocturnal melatonin secretion by light. Ten healthy Caucasian males with blue, green, or light brown irises (light-eyed Caucasians) and 11 Asian males with dark brown irises (dark-eyed Asians) volunteered to participate in the study. The mean ages of the light-eyed Caucasians and dark-eyed Asians were 26.4 +/- 3.2 and 25.3 +/- 5.7 years, respectively. The subjects were exposed to light (1,000 lux) for 2 h at night. The starting time of exposure was set to 2 h before the time of peak salivary melatonin concentration of each subject, which was determined in a preliminary experiment. Salivary melatonin concentration and pupil size were measured before exposure to light and during exposure to light. The percentage of suppression of melatonin secretion by light was calculated. The percentage of suppression of melatonin secretion 2 h after the start of light exposure was significantly larger in light-eyed Caucasians (88.9 +/- 4.2%) than in dark-eyed Asians (73.4 +/- 20.0%) (P < 0.01). No significant difference was found between pupil sizes in light-eyed Caucasians and dark-eyed Asians. These results suggest that sensitivity of melatonin to light suppression is influenced by eye pigmentation and/or ethnicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号