首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation.  相似文献   

2.
3.
The cholesterol-depleting drug methyl-beta-cyclodextrin (Me-beta-CD) was tested for its effects on amphibian oocyte maturation, cholesterol depletion, and low-density membrane recovery. Progesterone-induced oocyte maturation was accelerated by pretreatment of cells with 5-50 mM Me-beta-CD in a dose-dependent manner. Treatment of oocytes with 50 mM Me-beta-CD alone was sufficient to induce germinal vesicle breakdown, stimulate formation of meiotic spindles, and stimulate phosphorylation of mitogen-activated protein kinase over time courses longer than those observed after progesterone treatment. After short-term (30 min) labeling of oocytes with [(3)H]cholesterol, 30-90 min of treatment with 5-50 mM Me-beta-CD removed 50%-70% of cell- associated label, and cholesterol depletion was not observed with alpha-cyclodextrin. After long-term (20-23 h) labeling of oocytes with [(3)H]cholesterol, Me-beta-CD treatment resulted in dose- dependent cholesterol depletion in the 5-50 mM range, and 50 mM Me-beta-CD removed approximately 50% of cell-associated label after 9 h. Treatment of oocytes with 5-50 mM Me-beta-CD also decreased recovery of low-density membrane by detergent-free sucrose gradient centrifugation. These results implicate cholesterol and low-density membrane domains in the signaling mechanisms leading to germinal vesicle breakdown in amphibian oocytes.  相似文献   

4.
The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts.  相似文献   

5.
Little information exists about single N-acetylglucosamine modifications on proteins in growth and developmental model systems. To explore these phenomena, Xenopus laevis oocytes from stages I-VI of oogenesis were isolated and proteins analyzed on SDS-PAGE. The proteins were probed with antibodies specific for O-GlcNAc. Levels of the O-GlcNAc protein modification were highest in stages I and II, while decreasing in stages III-VI. The reduction in amount of O-GlcNAc-modified proteins was correlated to increases in apparent O-GlcNAcase (streptozotocin-inhibitable neutral hexosaminidase), activity involved in removing protein monoglycosylations. The O-GlcNAc modification was also characterized during progesterone-stimulated oocyte maturation. Although O-GlcNAcase activity appeared relatively constant between quiescent and matured stage VI oocytes, a small decrease in the levels of both total and specific O-GlcNAc-modified proteins was observed. Investigating the function of O-GlcNAc during maturation, oocytes were incubated with compounds known to modulate the levels of the O-GlcNAc protein modification and then stimulated to mature. Oocytes treated with compounds known to increase O-glycosylation consistently matured slower than non-treated controls, while oocytes treated with compounds that decrease O-glycosylation matured slightly faster than controls. The O-GlcNAc modification may play important roles in both the developmental and cell division processes of X. laevis oocytes.  相似文献   

6.
Mitotic spindle assembly in Xenopus egg extracts is regulated at least in part by importin beta and its regulator, the small GTPase, Ran. RanGTP stabilizes microtubules near the chromosomes during spindle assembly by selectively releasing spindle assembly factors from inhibition by importin alpha/beta in the vicinity of the chromosomes. Several spindle assembly factors are regulated in this manner. We identified maskin, the Xenopus member of the transforming acidic coiled coil family of proteins, as a potential candidate in a two-step affinity chromatography approach designed to uncover additional downstream targets of importin alpha/beta in mitosis. Here, we show that although maskin lacks a canonical nuclear localization sequence, it binds importin beta in a RanGTP-regulated manner. We further show that importin beta inhibits the regulatory phosphorylation of maskin by Aurora-A. This suggests a novel mechanism by which importin beta regulates the activity of a spindle assembly factor.  相似文献   

7.
8.
Cytochalasin B (CB) exerts an inhibiting effect on the formation, migration and anchoring in the cortex of the meiotic spindle in maturing Xenopus laevis oocytes. Regional sensitivity to CB (CB-sensitive zones) has been found in the oocytes which varies with reference to the stage of oocyte maturation at which CB is applied. Light and electron microscopy has shown that in these CB-sensitive zones the yolk and pigment granules, unlike the cortical ones, are displaced into the cytoplasm centripetally under the influence of CB.  相似文献   

9.
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization.  相似文献   

10.
11.
《Developmental biology》1985,110(1):230-237
Protein synthesis rates in Xenopus laevis oocytes from stage 1 through stage 6 were measured. In addition, the translational efficiencies, total RNA contents, and percentages of ribosomes in polysomes in growing oocytes at several stages were determined. Stage 1 oocytes synthesize protein at a mean rate of 0.18 ng hr−1 while stage 6 oocytes make protein at a rate of 22.8 ng hr−1. Polysomes from growing and full-grown oocytes sedimented in a sucrose gradient with a peak value of 300 S, corresponding to a weight-average packing density of 10 ribosomes per mRNA. Ribosome transit times of endogenous mRNAs were essentially unchanged at all stages examined. While the oocyte's total ribosomal RNA content was observed to increase about 115-fold during oogenesis, the percentage of ribosomes in polysomes remained constant at approximately 2%. Taken together, the data suggest that the 127-fold increase in protein synthesis which occurs during Xenopus oogenesis involves the progressive recruitment onto polysomes of mRNA from the maternal stockpile.  相似文献   

12.
The calmodulin levels in stage 6 Xenopus oocytes averaged 89 +/- 24 (SD) ng/oocyte and had largely accumulated by stage 3 of oogenesis. From stage 3 to early stage 6, calmodulin levels did not increase further. However, in large stage 6 oocytes (greater than 1.25 mm diam) calmodulin levels again rose to a level as high as 121 ng/oocyte. Calmodulin levels did not change during the maturation of stage 6 oocytes and the results of measurements on animal and vegetal oocyte halves from control and mature oocytes showed no evidence of a redistribution of calmodulin during maturation. Measurements of calmodulin synthesis in stages 1 and 2 oocytes, stage 4 oocytes, and stage 6 oocytes indicated that calmodulin was being synthesized continuously during oogenesis and that the rate of synthesis increased during oogenesis. In stage 1 and 2 oocytes (combined), the synthesis rate was 3.5 pg/hr/oocyte; in stage 4 oocytes it was 48 pg/hr/oocyte, and in large stage 6 oocytes the rate had increased to 160 pg/hr/oocyte. These changes in the rates of synthesis were discussed as they relate to the pattern of calmodulin accumulation during oogenesis.  相似文献   

13.
Xenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a nongenomic mechanism that implicates the inhibition of the effector system adenylyl cyclase (AC). Recently, it has been shown that the G protein betagamma heterodimer is involved in oocyte maturation arrest. Since AC is the proposed target for Gbetagamma action, we considered of importance to identify and characterize the Gbetagamma regulated AC isoform(s) that are expressed in the Xenopus oocyte. Through biochemical studies, we found that stage VI plasma membrane oocyte AC activity showed attributes of an AC2 isoform. Furthermore, exogenous Gbetagamma was capable to activate oocyte AC only in the presence of the activated form of Galphas (Galphas-GTPgammaS), which is in agreement with the Ggammabeta conditional activation reported for the mammalian AC2 and AC4 isotypes. In order to study the functional role of AC in oocyte maturation we cloned from a Xenopus oocyte cDNA library a gene encoding an AC with high identity to AC7 (xAC7). Based on this sequence, we constructed a minigene encoding the AC-Gbetagamma interacting region (xAC7pep) to block, within the oocyte, this interaction. We found that microinjection of the xAC7pep potentiated progesterone-induced maturation, as did the AC2 minigene. From these results we can conclude that a Gbetagamma-activated AC is playing an important role in Xenopus oocyte meiotic arrest in a Galphas-GTP dependent manner.  相似文献   

14.
15.
The Xenopus maternal mRNA D7 is translationally repressed during oogenesis, only becoming recruited into polysomes during oocyte maturation, with D7 protein being detectable for the first time prior to germinal vesicle breakdown (GVBD). The synthesis of D7 protein was found to be induced by a variety of maturation-promoting agents including cyclin, c-mos and crude preparations of MPF. D7 protein induced by all these agents is post-translationally modified and exists as a number of variants of differing molecular weight. In contrast to endogenous D7 mRNA, D7 RNA injected into the stage VI oocyte is efficiently translated, resulting in the accumulation of predominantly unmodified D7 polypeptides, which become increasingly modified during oocyte maturation to produce a pattern of polypeptides similar to those derived from endogenous D7 mRNA. Thus, the system that results in the post-translational modification of the D7 protein is itself activated during oocyte maturation. The nature of the protein modification is not known but does not appear to be phosphorylation. The translation of exogenous D7 RNA in the stage VI oocyte does not lead to translational derepression of endogenous D7 mRNA.  相似文献   

16.
The tissue and developmental distribution of the various myosin subunits has been examined in bovine cardiac muscle. Electrophoretic analysis shows that a myosin light chain found in fetal but not in adult ventricular myosin is very similar and possibly identical to the light chain found in fetal or adult atrial and adult Purkinje fiber myosins. This light chain comigrates on two-dimensional gels with the bovine skeletal muscle embryonic light chain. Thus, this protein appears to be expressed only at early developmental stages in some tissues (cardiac ventricles, skeletal muscle) but at all stages in others (cardiac atria). The heavy chains of these myosins have been examined by one- and two-dimensional polypeptide mapping. The ventricular and Purkinje fiber heavy chains are indistinguishable. They are, however, different from the heavy chain found in cultured skeletal muscle myotubes, in contrast to the situation concerning the embryonic/atrial light chain.  相似文献   

17.
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51 +/- 0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as beta-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor--cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins-lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein-protein interactions required for the cell cycle kinetic.  相似文献   

18.
Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55-Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.  相似文献   

19.
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号