首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel pressure chamber system has been developed for the study of living cells under conditions of extremely high hydrostatic pressure up to 100 MPa (1 atm = 0.101325 MPa). The temperature in the chamber is thermostatically controlled in the range from 2 degrees to 80 degrees C. Two high-pressure pumps are employed for continuous perfusion of the chamber with culture medium and a chemical solution under high hydrostatic pressure conditions. The chamber has a 2-mm-thick glass window 2 mm in diameter, with a minimum working distance of 3.8 mm. The chamber system is designed to be adaptable to a variety of microscopic and imaging techniques. Using this chamber system, we successfully carried out real-time observations of elongated Escherichia coli and rounded HeLa cells under pressure.  相似文献   

2.
Since high hydrostatic pressure is becoming increasingly important in modern food preservation, its potential effects on microorganisms need to be thoroughly investigated. In this context, mild pressures (<200 MPa) have recently been shown to induce an SOS response in Escherichia coli MG1655. Due to this response, we observed a RecA- and LexA-dependent induction of lambda prophage upon treating E. coli lysogens with sublethal pressures. In this report, we extend this observation to lambdoid Shiga toxin (Stx)-converting bacteriophages in MG1655, which constitute an important virulence trait in Stx-producing E. coli strains (STEC). The window of pressures capable of inducing Stx phages correlated well with the window of bacterial survival. When pressure treatments were conducted in whole milk, which is known to promote bacterial survival, Stx phage induction could be observed at up to 250 MPa in E. coli MG1655 and at up to 300 MPa in a pressure-resistant mutant of this strain. In addition, we found that the intrinsic pressure resistance of two types of Stx phages was very different, with one type surviving relatively well treatments of up to 400 MPa for 15 min at 20 degrees C. Interestingly, and in contrast to UV irradiation or mitomycin C treatment, pressure was not able to induce Stx prophage or an SOS response in several natural Stx-producing STEC isolates.  相似文献   

3.
Resistance of micro-organisms to high pressure is variable and directly related to extrinsic and intrinsic factors. Pressures of 100, 200, 300, 350 and 400 MPa were applied at 20°C for 10 min and at 10°C for 20 min using strains of Gram-positive and Gram-negative bacteria, moulds and yeasts, as well as spores of Gram-positive bacteria. The results showed that at pressures of 100 and 200 MPa, decreases in microbial populations were not significant, whereas the populations of all the micro-organisms tested decreased considerably at a pressure of 300 MPa. A pressure of 300 MPa at 10°C for 20 min was required to completely reduce the population of Saccharomyces cerevisiae , and a pressure of 350 MPa was needed to reduce most of the Gram-negative bacteria and moulds. The Gram-positive bacteria were more resistant, and pressures of 400 MPa were unable to completely reduce their populations. The different pressures employed had little effect on the initial numbers of spores. The initial populations of viable aerobic mesophiles and moulds and yeasts in vegetables (lettuce and tomatoes) decreased 1 log unit at pressures of 300 MPa and above under both sets of experimental treatment conditions. However, treatment at that pressure also resulted in alterations in the organoleptic properties of the samples. In the tomatoes, the skin loosened and peeled away, though the flesh remained firm, and colour and flavour were unchanged. The lettuce remained firm but underwent browning; flavour was unaffected. In vegetables use of moderate pressures in combination with other treatment conditions would appear to be required to reduce the populations of contaminating micro-organisms while avoiding the undesirable alterations in organoleptic properties that take place at 300 MPa.  相似文献   

4.
High pressure is an alternative to thermal processing and is used to preserve food. Listeria monocytogenes is a bacterium which grows at low temperature, is able to multiply under vacuum, and is responsible for food poisoning. Pressures of 100, 200, 300 and 400 MPa were used for 5, 10 and 15 min at 20 degrees C on pure culture, and on apple and plum jam baby food artificially contaminated with Listeria. Pure culture was also to test pressures of 200, 300, 350 and 400 MPa at 5 degrees C for 30 min. The results were analysed statistically and showed that there were no significant differences between pressures of 100 and 200 MPa at 5, 10 and 15 min. However, at 300 MPa, there were significant differences at 15 min. When the pressure treatment was 400 MPa, significant differences were observed at pressure times of 5, 10 and 15 min. The results were fitted to a linear curve. In pure culture, no viable cells were detected after high pressure treatment of 350 MPa for 30 min at 5 degrees C. The use of low temperature helps to maintain the sensory properties of the product.  相似文献   

5.
Simultaneous measurements were made with the xylem pressure probe on exposed, transpiring leaves and with the Scholander pressure chamber on both transpiring and covered, non-transpiring leaves of sugarcane and maize plants. Xylem tensions inferred from pressure chamber balancing pressures on non-transpiring leaves were similar to those measured directly with the xylem pressure probe in transpiring leaves. However, tensions inferred with the pressure chamber on transpiring leaves that were placed in plastics bags just prior to excision were up to 0.6 MPa greater than those measured concurrently with the xylem pressure probe. These findings suggest that relatively large differences in water potential between the xylem and bulk leaf tissue can exist during periods of rapid transpiration, and they confirm that the balance pressure of an excised, previously transpiring leaf is only a measure of the bulk average equilibrium leaf water potential and not of the true xylem pressure that existed prior to excision.Key words: Cohesion-Tension theory, xylem pressure probe, pressure chamber, xylem tension.   相似文献   

6.
The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (-20 degrees C without freezing and 25 degrees C) and three water activity levels (a(w)) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at -20 degrees C (in the liquid state) were more than 100 MPa less than those required at 25 degrees C, at pressures in the range of 100 to 300 MPa with an a(w) of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the a(w) was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm.  相似文献   

7.
High hydrostatic pressure reversibly transforms the amyloid fibrils of beta2-microglobulin (beta2-m) into a more tightly packed, reorganized structure, which has provided insight into the polymorphic properties of amyloid fibrils. Here, to further investigate the molecular mechanism that controls fibril structure, seed-dependent fibril growth from an acid-unfolded monomeric form under high pressure was studied. At all pressures up to 400 MPa, the fibril growth could be approximated by a single-exponential kinetics, although pressure above 300 MPa decreased the growth rate significantly. The fibrils formed at high pressure were similar to the reorganized fibrils formed initially at ambient pressure and then pressurized, suggesting that the reorganized fibrils were formed directly at high pressure. A systematic investigation of the extension rate under various pressures indicated that the activation free energies for the original and reorganized fibrils are significantly different, suggesting that different amino acid contacts are involved in these two types of fibrils. On the other hand, for the seed-dependent extension reactions of both types of fibrils, the activation volume was much smaller than the change in reaction volume, implying that only small numbers of side-chain interactions are achieved in the transition state. Importantly, we observed a marked acceleration of fibril growth, i.e., maturation, on repeated self-seeding above 300 MPa, revealing the coexistence of another type of fibril with a similar structure but with an increased growth-rate under high pressure.  相似文献   

8.
Pressure probe measurements have been interpreted as showing that xylem pressures below c. –0.4 MPa do not exist and that pressure chamber measurements of lower negative pressures are invalid. We present new evidence supporting the pressure chamber technique and the existence of xylem pressures well below –0.4 MPa. We deduced xylem pressures in water-stressed stem xylem from the following experiment: (1) loss of hydraulic conductivity in hydrated stem xylem (xylem pressure = atmospheric pressure) was induced by forcing compressed air into intact xylem conduits; (2) loss of hydraulic conductivity from cavitation and embolism in dehydrating stems was measured, and (3) the xylem pressure in dehydrated stems was deduced as being equal and opposite to the air pressure causing the same loss of hydraulic conductivity in hydrated stems. Pressures determined in this way are only valid if cavitation was caused by air entering the xylem conduits (air-seeding). Deduced xylem pressure showed a one-to-one correspondence with pressure chamber measurements for 12 species (woody angiosperms and gymnosperms); data extended to c. –10 MPa. The same correspondence was obtained under field conditions in Betula occidentalis Hook., where pressure differences between air- and water-filled conduits were induced by a combination of in situ xylem water pressure and applied positive air pressure. It is difficult to explain these results if xylem pressures were above –0.4 MPa, if the pressure chamber was inaccurate, and if cavitation occurred by some mechanism other than air-seeding. A probable reason why the pressure probe does not register large negative pressures is that, just as cavitation within the probe limits its calibration to pressures above c. –0.5 MPa, cavitation limits its measurement range in situ.  相似文献   

9.
The effect of pressure on the equilibrium of a reaction was studied. Theoretical equilibrium constants and product concentrations have been calculated at elevated pressures. The theory is illustrated with an example of l-malate synthesis catalyzed by a fumarase. To study shifts in the equilibrium relatively low pressures can be applied (50–200 MPa), but our calculations show that for process optimisation much higher pressures (up to 1000 MPa) have to be used.

At these higher pressures, more stable enzymes are needed. We performed experiments with the hyperthermophilic β-glycosidase from Pyrococcus furiosus as a catalyst. Oligosaccharides were synthesized from glucose in an equilibrium reaction at pressures from 0.1 to 500 MPa. The enzyme remained active at 500 MPa. The equilibrium of the reaction was influenced by pressure and shifted towards the hydrolysis side, decreasing final oligosaccharide concentrations with increasing pressure. This pressure dependence of the final product concentration and the equilibrium constant could be described with a positive reaction volume of 2.4 mol/cm3.  相似文献   


10.
Hydrolysis of β-lactoglobulin with thermolysin and pepsin at pressures ranging between 0.1 and 350 MPa showed a significant increase of cleavage rates. Pressure-induced changes of susceptibility to hydrolysis of β-lactoglobulin proteolytic sites were also observed. The pressure, raised to 200 MPa, accelerates the hydrolysis of β-lactoglobulin by thermolysin and changes obtained peptide profiles. Initially, higher pressure makes the N-terminal, and to a smaller extent, C-terminal peptide fragments of β-lactoglobulin molecule, more susceptible to removal by thermolysin. This indicates combined influence of pressure-induced thermolysin activation and partial unfolding of β-lactoglobulin by compression at neutral pHs. The rates of hydrolysis of β-lactoglobulin by pepsin (negligible at 0.1 MPa) are increased considerably with pressure up to 300 MPa. The Susceptibility of β-lactoglobulin proteolytic sites to peptic cleavage remains constant over all the studied pressure range. The lack of significant qualitative changes in the peptic peptide profiles produced at different pressures and at clearly pressure-dependent rates points to negative reaction volume changes as the major factor in peptic hydrolysis of β-lactoglobulin under high pressure. Thus the β-lactoglobulin molecule resists pressure-induced unfolding in acid pHs and yields to it in neutral pHs. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The pressure-induced denaturation of rabbit skeletal myosin and its subfragments under hydrostatic pressure were investigated. Four nanometer of red shift of the intrinsic fluorescence spectrum was observed in myosin under a pressure of 400 MPa. The ANS fluorescence of myosin increased with elevating pressure. Changes in the intrinsic fluorescence spectra of myosin and its subfragments were quantified and expressed as the center of spectral mass. The center of spectral mass of myosin and its subfragments linearly decreased with elevating pressure, and increased with lowering pressure. The fluorescence intensity of the ANS-labeled rod did not change during pressure treatment. The present results indicate that the most pressure-sensitive portion of myosin molecule is the head. Hysteresis of the center of spectral mass of S1 appeared under pressures above 300 MPa. Changes in the center of spectral mass of S1 above 350 MPa showed stronger hysteresis. The center of spectral mass did not decrease above 350 MPa during the compression process, indicating that S1 was stable in a partially denatured state at 350 MPa under pressure. The changes in the relative intensities of ANS fluorescence of S1 were measured under pressures up to 400 MPa, and the ANS fluorescence intensity increased with elevating pressure but it did not change after pressure release. The ANS fluorescence intensity increased under constant pressure suggesting that the pressure-induced denaturation of myosin was accelerated during pressurization.  相似文献   

12.
We investigated the response to high hydrostatic pressure (HHP) of mammalian cells, since HHP is proposed to be suitable to inactivate mammalian cells in biopharmaceutics and patient's material. We observed that cells were not restricted in their viability by pressures up to 100 MPa. Mammalian cells die when treated with pressures of 200 MPa or more. But the effects of 200, 300 or 400 MPa do not follow the same pattem. At 200 MPa, cells die in a way that is related to apoptosis. Some apoptotic characteristics like phosphatidylserine (PS) exposure and morphological alterations appear very fast. Other features like a higher exposure of intracellular NPn ligands and pronounced degradation of DNA and lectin ligands are unique features of HHP induced apoptosis. Cells treated with 300 and 400 MPa die immediately following a unique necrotic pathway, since treated cells harbour high DNA and glycoprotein degrading activities.  相似文献   

13.
M Nishiyama  Y Sowa 《Biophysical journal》2012,102(8):1872-1880
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.  相似文献   

14.
Hydrostatic pressure-induced structural changes in subfragment-1 (S1) of myosin molecule were studied. ATP-induced emission spectra of S1 were used to detect global structural change of S1 by pressure treatment. The fluorescence intensity of unpressurized S1 increased by addition of ATP. The increment of fluorescence of pressurized S1 up to 150 MPa was almost the same as control, whereas it became smaller above 200 MPa. ATP binding ability of S1 examined using 1, N6-ethenoadenosine 5′-diphosphate (-ADP) indicated that the binding of -ADP to S1 decreased in the range of 250–300 MPa. S1 pressurized below 250 MPa and unpressurized S1 similarly bound to F-actin, although binding of S1 pressurized above 250 MPa decreased. Electron microscopic observation revealed arrowhead structure in control acto-S1, while disordered arrowhead structure was observed in acto-S1 prepared from pressurized S1 at 300 MPa. S1 pressurized below 250 MPa retained the same actin activated ATPase activity as the control, whereas the activity decreased to 60% at 300 MPa. Pressure treated S1 was easily cleaved by tryptic digestion into three domains, i.e. 27 kDa (N-terminal), 50 and 20 kDa (C-terminal) fragments, which were the same as those in unpressurized one. It is concluded that pressure-induced global structural changes of S1 begin to occur about 150 MPa, and the local structural changes in ATPase and actin binding sites followed with elevating pressure to 250–300 MPa.  相似文献   

15.
A high pressure reactor for steady state studies of enzymes is described. It allows injection, stirring, and sampling without release of the pressure (up to at least 400 MPa). Thus, either substrate or enzyme can be injected to initiate an enzyme-catalyzed reaction whose progress can then be followed by measurements on samples taken from the reactor. The dead time of sampling is 10-15 s, which allows reactions with pseudo-first-order rate constants smaller than about 1 min-1 to be monitored. It can be used for any enzymatic reaction; unlike previously described high pressure apparatus, it is not limited to the study of enzymes whose activity can be directly followed by spectrophotometry. The use and reliability of this reactor is demonstrated by tests with aspartate transcarbamylase. The activity of this enzyme is enhanced by pressures of the order of 120 MPa.  相似文献   

16.
Viability, morphology, lysis, and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris MG1363 and SK11 were determined after exposure to pressure. Both strains were completely inactivated at pressures of 400 to 800 MPa but unaffected at 100 and 200 MPa. At 300 MPa, the MG1363 and SK11 populations decreased by 7.3 and 2.5 log cycles, respectively. Transmission electron microscopy indicated that pressure caused intracellular and cell envelope damage. Pressure-treated MG1363 cell suspensions lysed more rapidly over time than did non-pressure-treated controls. Twenty-four hours after pressure treatment, the percent lysis ranged from 13.0 (0.1 MPa) to 43.3 (300 MPa). Analysis of the MG1363 supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed pressure-induced lysis. Pressure did not induce lysis or membrane permeability of SK11. Renaturing SDS-PAGE (zymogram analysis) revealed two hydrolytic bands from MG1363 cell extracts treated at all pressures (0.1 to 800 MPa). Measuring the reducing sugars released during enzymatic cell wall breakdown provided a quantitative, nondenaturing assay of cell wall hydrolase activity. Cells treated at 100 MPa released significantly more reducing sugar than other samples, including the non-pressure-treated control, indicating that pressure can activate cell wall hydrolase activity or increase cell wall accessibility to the enzyme. The cell suspensions treated at 200 and 300 MPa did not differ significantly from the control, whereas cells treated at pressures greater than 400 MPa displayed reduced cell wall hydrolase activity. These data suggest that high pressure can cause inactivation, physical damage, and lysis in L. lactis. Pressure-induced lysis is strain dependent and not solely dependent upon cell wall hydrolase activity.  相似文献   

17.
AIMS: The objective of this work was to evaluate the use of wild-type GFP and mutant forms thereof as reporter for gene expression under high pressure conditions. METHODS AND RESULTS: The intensity of fluorescence after high pressure treatment was checked by subjecting cells, crude protein extracts containing GFPs and purified GFPs to pressures ranging from 100 MPa to 900 MPa. All tested GFP's retained fluorescence up to 600 MPa without loss of intensity. Expression of GFP under sublethal conditions was investigated in Escherichia coli with plasmid pQBI63, in which rsGFP is placed downstream of the T7 RNA polymerase binding site. T7 RNA polymerase is controlled in E. coli BL21 (DE3) pLysS by an IPTG inducible lacUV5 promoter. A pressure induced increase of GFP expression was monitored at 50 Mpa and 70 MPa. CONCLUSION: Fluorescence of GFPs is not influenced at pressures at which protein expression still occurs. We showed that the expression system used is inducible by pressurized conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proved GFP to be a suitable reporter for gene expression studies capable to detect pressure induced gene expression.  相似文献   

18.
The effects of hydrostatic pressure on creatine kinase activity and conformation were investigated using either the high-pressure stopped-flow method in the pressure range 0.1-200 MPa for the activity determination, or the conventional activity measurement and fluorescence spectroscopy up to 650 MPa. The changes in creatine kinase activity and intrinsic fluorescence show a total or partial reversibility after releasing pressure, depending on both the initial value of the high pressure applied and on the presence or absence of guanidine hydrochloride. The study on 8-anilinonaphthalene-1-sulfonate binding to creatine kinase under high pressure indicates that the hydrophobic core of creatine kinase was progressively exposed to the solvent at pressures above 300 MPa. This data shows that creatine kinase is inactivated at low pressure, preceding both the enzyme dissociation and the unfolding of the hydrophobic core occurring at higher pressure. Moreover, in agreement with the recently published structure of the dimer, it can be postulated that the multistate transitions of creatine kinase induced both by pressure and guanidine denaturation are in direct relationship with the existence of hydrogen bonds which maintain the dimeric structure of the enzyme.  相似文献   

19.
The aim of the present study was to test the accuracy of the pressure-chamber technique as a method for estimating leaf-cell turgor pressures. To this end, pressure-probe measurements of cell turgor pressure (Pcell) were made on mesophyll cells of intact, attached leaves of Kalanchoë daigremontiana. Immediately following these measurements, leaves were excised and placed in a pressure chamber for the determination of balance pressure (Pbal). Cell-sap osmotic pressure (?cell) and xylem-sap osmotic pressure (?xyl) were also measured, and an average cell turgor pressure calculated as Pcell=?cell–?xylPbal. The apparent value of Pbal was positively correlated with the rate of increase of chamber pressure, and there was also a time-dependent increase associated with water loss. On expressing sap from the xylem, ?xyl fell to a plateau value that was positively correlated with ?cell. Correcting for these effects yielded estimates of Pbal and ?xyl at the time of leaf excision. On average, the values of Pcell obtained with the two techniques agreed to within ±002 MPa (errors are approximate 95% confidence limits). If ?xyl were ignored, however, the calculated turgor pressures would exceed the measured values by an average of 0.074 ± 0.012MPa, or 48% at the mean measured pressure of 0.155 MPa. We conclude that the pressure-chamber technique allows a good estimate to be made of turgor pressure in mesophyll cells of K. daigremontiana, provided that ?xyl is included in the determination. The 1:1 relationship between the measured and calculated turgor pressures also implies that the weighted-average reflection coefficient for the mesophyll cell membranes is close to unity.  相似文献   

20.
High hydrostatic pressures of 100 MPa to 300 MPa were applied to isolated myofibrils prepared from rabbit skeletal muscle to investigate the pressure-induced degradation of myofibrillar structure in the muscle.

A marked loss of the regular structure was observed in the phase-contrast image of the isolated myofibrils pressurized at 150 MPa, with further progress of the rupture of structure with increasing pressure applied. When exposed to pressures of 200 MPa or higher, clumping of the crushed myofibrils was observed. Electron microscopic studies of the pressurized myofibrils showed that the loss of M-line materials, rupture of I-filament, and the loss of the structural continuity with the loss of Z-line progressed in the myofibrils with increasing pressure applied. A sigmoidal relationship was obtained between the degree of solubilization and the intensity of the pressure applied to the isolated myofibrils. The electrophoretic analysis indicated that the amount and the species of the protein released from the myofibrils at each stage of the pressurization corresponded to the disruption of the ultrastructure in the myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号