首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Laboratory-scale anaerobic-aerobic fluidized-bed bioreactors (FBR) with porous magnetic ceramics as support were successfully applied to treat purified terephthalic acid (PTA) wastewater. After a short 14-day start-up period, the system was stably operating. During the 40?d stable period, the system organic loading rate (OLR) increased from 6.68 to 23.87?kg chemical oxygen demand (COD)/(m3d), the effluent COD and PTA were below 90 and 30?mg/L, respectively. The FBR presented excellent COD and PTA removal efficiency with a low hydraulic retention time (HRT) value of six hours. The growth kinetic parameters suggested that the biomass in FBR possess high maximum specific growth rate (μmax?=?2.22?d?1) and good tolerance to varied OLR (Ks?=?258.67?mg COD/L).  相似文献   

2.
The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (ECSE) 160 dS m−1 and soil T1 with pH 8.5 and ECSE 0.8 dS m−1). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.  相似文献   

3.
【目的】通过研究林地转型耕地对土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的影响,为丘陵区耕地长期施肥下农田土壤微生物多样性丧失的影响机制以及未来的退耕还林过程中土壤微生物多样性的提升和土地可持续利用研究提供一些基础数据和技术支撑。【方法】采用实时荧光定量PCR (real-time quantitative PCR,qPCR)和高通量测序技术解析土壤编码碱性磷酸酶基因的细菌群落的丰度、多样性和结构变化,并耦合土壤化学性质分析,明确土壤编码碱性磷酸酶基因的细菌群落丰度和多样性与土壤化学性质的关系以及关键的驱动因子。【结果】林地垦殖为农田后,长期施肥导致土壤酸化,pH从5.58降至4.72,而土壤速效磷则从2.49 mg/kg增至49.3 mg/kg。相应地,耕地土壤编码碱性磷酸酶基因的细菌群落的丰度和Shannon指数均显著低于林地。基于编码碱性磷酸酶的phoD基因(alkaline phosphatase-encoding gene)序列的物种分类表明,丘陵区土壤编码碱性磷酸酶基因的细菌群落的优势门为变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia),其中林地土壤的蓝藻门的相对丰度显著高于耕地。耕地土壤的慢生根瘤菌属(Bradyrhizobium)和芽孢杆菌属(Bacillus)的相对丰度显著高于林地,而中慢生根瘤菌属(Mesorhizobium)、假单胞菌属(Pseudomonas)、Chlorogloea属、Gemmata属、Phormidesmis属和Pseudolabrys属的相对丰度显著低于林地。土壤编码碱性磷酸酶基因的细菌群落结构因林地转型耕地而发生显著改变。phoD基因丰度和Shannon指数与pH显著正相关,而与总磷、速效磷、硝态氮和铵态氮均显著负相关,其中土壤速效磷是这些影响因素中影响最强烈的,长期施用无机磷肥导致含碱性磷酸酶的土壤细菌群落对有机磷分解的能力退化。【结论】林地转型耕地加之长期施肥改变了土壤pH和速效磷,并在其他理化因子的协同驱动下,导致土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的显著变化。  相似文献   

4.
The effect of pH on nitrate and ammonium uptake in the high‐affinity transport system and low‐affinity transport system ranges was compared in two conifers and one crop species. Many conifers grow on acidic soils, thus their preference for ammonium vs nitrate uptake can differ from that of crop plants, and the effect of pH on nitrogen (N) uptake may differ. Proton, ammonium and nitrate net fluxes were measured at seedling root tips and 5, 10, 20 and 30 mm from the tips using a non‐invasive microelectrode ion flux measurement system in solutions of 50 or 1500 µM NH4NO3 at pH 4 and 7. In Glycine max and Pinus contorta, efflux of protons was observed at pH 7 while pH 4 resulted in net proton uptake in some root regions. Pseudotsuga menziesii roots consistently showed proton efflux behind the root tip, and thus appear better adapted to maintain proton efflux in acid soils. P. menziesii's ability to maintain ammonium uptake at low pH may relate to its ability to maintain proton efflux. In all three species, net nitrate uptake was greatest at neutral pH. Net ammonium uptake in G. max and net nitrate uptake in P. menziesii were greatly reduced at pH 4, particularly at high N concentration, thus N concentration should be considered when determining optimum pH for N uptake. In P. menziesii and G. max, net N uptake was greater in 1500 than 50 µM NH4NO3 solution, but flux profiles of all ions varied among species.  相似文献   

5.
6.
Change of bacterial community occurring along a hot water stream in the Hishikari gold mine, Japan, was investigated by applying a combination of various culture-independent techniques. The stream, which is derived from a subsurface anaerobic aquifer containing plentiful CO2, CH4, H2, and NH4+, emerges in a mine tunnel 320 m below the surface providing nutrients for a lush microbial community that extends to a distance of approximately 7 m in the absence of sunlight-irradiation. Over this distance, the temperature decreases from 69°C to 55°C, and the oxidation-reduction potential increases from –130 mV to +59 mV. In the hot upper reaches of the stream, the dominant phylotypes were: 1) a deeply branching lineage of thermophilic methane-oxidizing -Proteobacteria, and 2) a thermophilic hydrogen- and sulfur-oxidizing Sulfurihydrogenibium sp. In contrast, the prevailing phylotypes in the middle and lower parts of the stream were closely related to ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira spp.. Changes in the microbial metabolic potential estimated by competitive PCR analysis of genes encoding the enzymes, particulate methane monooxygenase (pmoA), ammonia monooxygenase (amoA), and putative nitrite oxidoreductase (norB), also substantiated the community shift indicated by 16S rRNA gene analysis. The diversity of putative norB lineages was assessed for the first time in the hot water environment. Estimation of dominant phylotypes by whole-cell fluorescent in situ hybridization and changes in inorganic nitrogen compounds such as decreasing ammonium and increasing nitrite and nitrate in the mat-interstitial water along the stream were consistent with the observed transition of the bacterial community structure in the stream.  相似文献   

7.
【目的】黄土-古土壤序列是记录第四纪气候环境变化的良好载体,其内部的土壤微生物特征是蕴含土壤环境变化的重要信息。由于黄土与古土壤成壤环境的气候差异,微生物群落结构特征可能会有不同的响应,但针对该问题的研究还十分有限。【方法】选择任家坡(R)和九州台(J)两地黄土(RL和JL)-古土壤(RS和JS)序列,运用高通量测序技术和线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)识别土壤原核生物群落结构和类群差异,基于原核生物分类单元功能注释(functional annotation of prokaryotic taxa, FAPROTAX)数据库进行群落功能预测,以及利用Mantel test探讨影响土壤原核生物群落稳定的环境因子。【结果】土壤中碳氮营养物质与气候变化的代用指标磁化率、Rb/Sr变化趋势一致,含量整体表现为古土壤(RS和JS)高,对应的黄土(RL和JL)低,这一特征在任家坡古土壤(RS)中尤为显著;在同一气候时期,九州台较任家坡更为干冷,并且九州台古土壤沉积阶段也受到较强冬季风的影响,使其气候冷干与暖湿转变呈渐变型。原核生物群落结构中酸杆菌门(Acidobacteria)、泉古菌门(Crenarchaeota)、绿弯菌门(Chloroflexi)等具有嗜热嗜温性质的细菌和古菌在任家坡黄土-古土壤(RL和RS)中丰度较高,芽单胞菌门(Gemmatimonadetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、广古菌门(Euryarchaeota)、异常球菌-栖热菌门(Deinococcus-Thermus)等耐旱、适宜极端环境中生存的细菌和古菌在九州台黄土-古土壤中(JL和JS)丰度较高。同时,生命产能、氮、锰、铁、氯元素循环相关功能基因在任家坡古土壤(RS)中表达量最高,而碳、氢、硫元素循环相关功能基因在任家坡黄土(RL)中表达量最高。与任家坡相比,九州台原核生物群落具有物种多样性高、功能种类少的特点。Mantel test分析进一步表明,有机碳(soil organic carbon, SOC)、含水率(soil water content, SWC)、总氮(total nitrogen, TN)和硝态氮(nitrate nitrogen, NO3--N)是影响任家坡原核生物群落和功能稳定的关键环境因子,而TN、SOC、pH值和铵态氮(NH4+-N)是影响九州台原核生物群落和功能稳定的关键环境因子。【结论】在暖湿期,微生物群落分化出更多的功能种类,具有更旺盛的生命活动;在冷干期,微生物群落通过提高物种多样性来完成主要的生命活动功能,通过协同共生维持群落生存和稳定来适应环境胁迫。研究成果对认识气候变化对土壤微生物多样性和功能的影响具有重要意义。  相似文献   

8.
Synechocystis sp. PCC 6701 has a brilliantly colored pigment, phycobiliprotein containing phycoerythrin. Culture medium was optimized by sequential designs in order to maximize phycobiliprotein production. The observed fresh weights after 6 days were 0.58 g/L in BG-11, 0.83 g/L in medium for Scenedesmus sp. and 0.03∼0.52 g/L in the other tested media. Medium for Scenedesmus sp. was selected to be optimized by fractional factorial design and central composite design since the medium maintained a more stable pH within a desirable range due to higher contents of phosphate. The fractional factorial design had seven factors with two levels: KNO3, NaNO3, NaH2PO4, Na2HPO4, Ca(NO3)2, FeEDTA, and MgSO4. From the result of fractional factorial design, nitrate and phosphate were identified as significant factors. A central composite design was then applied with four variables at five levels each: nitrate, phosphate, pH, and light intensity. Parameters such as fresh weight and phycobiliprotein contents were used to determine the optimum value of the four variables. The proposed optimum media contains 0.88 g/L of nitrate, 0.32 g/L of phosphate under 25 μE·m−2·s−1 of light intensity. The maximum phycobiliprotein contents have been increased over 400%, from 4.9 to 25.9 mg/L after optimization.  相似文献   

9.
10.
Sun  Bin  Tang  Chunyu  Yang  Na  He  Peimin 《Aquatic Ecology》2021,55(2):467-481

The interaction of various environmental triggers on phytoplankton communities of an artificial lagoon of Hangzhou Bay China, was studied during a Microcystis bloom in summer 2016. Forty-two phytoplankton genera (six phyla) were defined, with Bacillariophyta accounting for half of all phytoplankton genera. It was determined that Melosira, Chlorella, Cyclotella, Microcystis, Merismopedia, Anabaena and Selenastrum, which were identified and counted by an inverted microscope, were the dominant genera. In addition, a series of environmental indicators were analyzed, including salinity, seawater temperature, dissolved inorganic nitrogen, soluble reactive phosphorus (PO4-P), ammonium (NH4-N), nitrate nitrogen (NO3-N), nitrite (NO2-N), silicate (SiO4-Si), and chemical oxygen demand of the water samples, as well as zooplankton community. The results of variance partitioning by R language revealed that the most influential factor driving the change in the phytoplankton community was the environment (49.7%), and zooplankton grazing represented only 7.9%. The results of redundancy analysis indicated that the change and composition of the phytoplankton community correlated significantly with the interaction of salinity, PO4-P, transparency, seawater temperature, and the dominant zooplankton species. Notably, salinity and temperature fluctuation were the key factors inducing the rapid succession of the plankton community in artificial lagoons such as within the Jinshan City Beach (Shanghai, China).

  相似文献   

11.
Abstract

To develop a greater understanding of hyporheic zone microbial biogeochemistry, we sampled pore fluids from a piezometer array associated with the McCarran Ranch channel bar (MRCB); a partially submerged cobble island in the Truckee River, NV, USA. Flowing surface water and pumped pore fluids were characterized by prokaryotic community structure, metabolic potential, and aqueous physicochemistry. Concentrations of potential respiratory electron acceptors were highest in surface water and riverbed porewater and sequentially depleted in porewaters along the inferred flowpath (O2, then NO3?, then SO42?). Correspondingly, cultivable nitrate reducers/denitrifiers were most abundant in surface water and riverbed porewater, despite oxic conditions. Cultivable sulfate reducers were overall most abundant in surface water. Prokaryotic community reconstruction from 16S rRNA gene sequences indicates that the surface water community was less diverse than that of porewater and supports a shift in metabolic strategy, from aerobic heterotrophy in surface water (e.g., Comamonadaceae and Sporichthyaceae) to chemolithotrophy and anaerobic metabolisms (e.g., Hydrogenophaga spp., Ferribacterium spp., Methanobacterium spp.) along the hyporheic flow path. These data indicate that prokaryotic communities within the MRCB are phylogenetically and metabolically diverse and contribute to biogeochemical cycling in this common yet relatively understudied habitat.  相似文献   

12.
Peatlands cover more than 30% of the Finnish land area and impact N2O fluxes. Denitrifiers release N2O as an intermediate or end product. In situ N2O emissions of a near pH neutral pristine fen soil in Finnish Lapland were marginal during gas chamber measurements. However, nitrate and ammonium fertilization significantly stimulated in situ N2O emissions. Stimulation with nitrate was stronger than with ammonium. N2O was produced and subsequently consumed in gas chambers. In unsupplemented anoxic microcosms, fen soil produced N2O only when acetylene was added to block nitrous oxide reductase, suggesting complete denitrification. Nitrate and nitrite stimulated denitrification in fen soil, and maximal reaction velocities (vmax) of nitrate or nitrite dependent denitrification where 18 and 52 nmol N2O h-1 gDW -1, respectively. N2O was below 30% of total produced N gases in fen soil when concentrations of nitrate and nitrite were <500 μM. vmax for N2O consumption was up to 36 nmol N2O h-1 gDW -1. Denitrifier diversity was assessed by analyses of narG, nirK/nirS, and nosZ (encoding nitrate-, nitrite-, and nitrous oxide reductases, respectively) by barcoded amplicon pyrosequencing. Analyses of ~14,000 quality filtered sequences indicated up to 25 species-level operational taxonomic units (OTUs), and up to 359 OTUs at 97% sequence similarity, suggesting diverse denitrifiers. Phylogenetic analyses revealed clusters distantly related to publicly available sequences, suggesting hitherto unknown denitrifiers. Representatives of species-level OTUs were affiliated with sequences of unknown soil bacteria and Actinobacterial, Alpha-, Beta-, Gamma-, and Delta-Proteobacterial sequences. Comparison of the 4 gene markers at 97% similarity indicated a higher diversity of narG than for the other gene markers based on Shannon indices and observed number of OTUs. The collective data indicate (i) a high denitrification and N2O consumption potential, and (ii) a highly diverse, nitrate limited denitrifier community associated with potential N2O fluxes in a pH-neutral fen soil.  相似文献   

13.
Summary Pollen grains containing either theWx,wx,Su 1,Su 1,Sh 2orsh 2alleles were stored for 0, 1, 2, 3, 4 or 5 days at 2 °C. After each storage period, a portion of each genotype was cultured on a 15% sucrose, 0.6% bacto-agar, 0.03% calcium nitrate and 0.01% boric acid medium, while another portion was placed on receptive silks, the number of kernels produced being a measure of fertilization ability. Regardless of the allele present in the pollen grain, 1 day of storage greatly increased the germination percentage and significantly increased pollen tube length. After 4 days of storage, there was noin vitro germination but some fertilization ability was found. The experiment was designed so that comparisons free from genetic background effects could be made between alleles at each locus. Significant differences at each storage period and a differential response to storage were obtained at some loci for germination percentage, ruptured percentage, pollen tube length and fertilization ability. A relationship between dominance of the allele and response to storage was detected only for fertilization ability. Since alleles at these loci affect the biochemical composition of pollen grains containing them, the results suggest that differences inin vitro germination characteristics and fertilization ability may be associated with biochemical composition.Journal Series Paper No. 3950, Florida Agricultural Experiment Station.  相似文献   

14.
Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 ± 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2 /NH4 + ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m3 day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.  相似文献   

15.
Bacterial community succession in the start-up of a large-scale, completely-mixed composting reactor was analyzed by 16S rRNA gene (16S rDNA) clone analysis and denaturing gradient gel electrophoresis (DGGE) combined with measurements of temperature, pH, moisture contents, and decomposing rate. DGGE analysis and physicochemical parameters showed that bacterial community succession occurred in four phases; (1) at the start of operation and pH decreasing period (day 0–3), (2) pH decreased and increased period (day 4–11), (3) middle term, moisture content decreasing and maximum temperature increased period (day 12–16) and (4) latter term, temperature decreasing period (day 17–24). Lactobacillus spp. and Bacillus coagulans were detected from the initial phase and middle term, respectively. 16S rDNA clone analysis showed that the dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales. The order “Lactobacillales” was unique which may be caused by using the plastic bottle flakes (polyethylene terephthalate, PET) as bulking agent.  相似文献   

16.
Summary Nitrate reductase activity (NRA) in the leaves of two subspecies ofHypochaeris radicata was taken as a parameter for nitrate production in the soilin situ. Ammonium addition to the soil ofH. radicata ssp.radicata (soil pH 6.2) resulted in an increase of NRA, thus indicating nitrate formation by chemolithotrophic nitrifiers after a certain time-lag. Addition of ammonium to the soil ofH. radicata ssp.ericetorum (soil pH 4.3) dit not affect NRA in the leaves. Tests based on the MPN method failed to demonstrate the occurrence of chemolithotrophic nitrifiers in this soil. However, the addition of peptone led to an increase of NRA within seven days, which indicates the presence of heterotrophic nitrifying organisms. The results obtainedin situ were confirmed in a laboratory experiment, where soil samples were incubated in the presence and absence of (NH4)2SO4 or peptone. The addition of ammonium led to a decrease in the production of nitrate to zero as compared with the control in the acid soil of ssp.ericetorum, whereas the addition of peptone resulted in nitrate levels amounting to about twice the control value. In the soil of ssp.radicata nitrate formation showed a rapid increase, compared with the control, after the addition of ammonium as well as after the addition of peptone.Grassland species research group, publication no27  相似文献   

17.
The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with NH4 + and NO2 as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescencein situ hybridization (FISH) technique. By the last month of operation, the consumed NO2 N/NH4 +-N ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influentshutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.  相似文献   

18.
A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2‐fixation enzyme RUBISCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the “phytoarray.” Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum Bohlin were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways, and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high‐resolution, high‐throughput approach to assessing phytoplankton community composition in marine environments.  相似文献   

19.
Assimilatory nitrate reductase gene fragments were isolated from epiphytes and plankton associated with seagrass blades collected from Tampa Bay, Florida, USA. Nitrate reductase genes from diatoms (NR) and heterotrophic bacteria (nasA) were amplified by polymerase chain reaction (PCR) using two sets of degenerate primers. A total of 129 NR and 75 nasA clones from four clone libraries, two from each of epiphytic and planktonic components, were sequenced and aligned. In addition, genomic DNA sequences for the NR fragment were obtained from Skeletonema costatum and Thalassiosira weissflogii diatom cultures. Rarefaction analysis with an operational taxonomic unit cut-off of 6% indicated that diversity of the NR and nasA clone libraries were similar, and that sequencing of the clone libraries was not yet saturated. Phylogenetic analysis indicated that 121 of the 129 NR clones sequenced were similar to diatom sequences. Of the eight non-diatom sequences, four were most closely related to the sequence of Chlorella vulgaris. Introns were found in 8% of the Tampa Bay NR sequences; introns were also observed in S. costatum, but not T. weissflogii. Introns from within the same clone library exhibited close similarity in nucleotide sequence, position and length; the corresponding exon sequences were unique. Introns from within the same component were similar in position and length, but not in nucleotide sequence. These findings raise questions about the function of introns, and mechanisms or time evolution of intron formation. A large cluster of 14 of the 75 nasA sequences was similar to sequences from Vibrio species; other sequences were closely related to sequences from Alteromonas, alpha-proteobacteria and Marinomonas-like species. Biogeographically consistent patterns were observed for the nasA Tampa Bay sequences compared with sequences from other locations: for example, Tampa Bay sequences were similar to those from the South Atlantic Bight, but not the Barents Sea. The Tampa Bay NR clone libraries contained sequences that exhibited phylogenetic similarity with sequences from coastal New Jersey and Monterey Bay, USA. For both NR and nasA, the sequences formed phylogenetic clusters containing nitrate reductase gene fragments that were common to both plankton and epiphyte components, and sequences that were unique to just one component. The implication that some organisms may be differentially represented in epiphytic versus planktonic components of the community suggests that local environmental conditions may have ramifications for regulation of nitrate assimilation processes, community composition, and ecosystem function.  相似文献   

20.
This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next‐Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia‐oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo‐acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4+ concentration. At the same time, abundant availability of NH4+ and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non‐nitrogen‐limited soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号