首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal signals are optimized for particular signaling environments [1-3]. While signaling, senders often choose favorable conditions that ensure reliable detection and transmission [4-8], suggesting that they are sensitive to changes in signal efficacy. Recent evidence has also shown that animals will increase the amplitude or intensity of their acoustic signals at times of increased environmental noise [9-11]. The nature of these adjustments provides important insights into sensory processing. However, only a single piece of correlative evidence for signals defined by movement suggests that visual-signal design depends on ambient motion noise [12]. Here we show experimentally for the first time that animals communicating with movement will adjust their displays when environmental motion noise increases. Surprisingly, under sustained wind conditions, the Australian lizard Amphibolurus muricatus changed the structure and increased the duration of its introductory tail flicking, rather than increasing signaling speed. The way these lizards restructure the alerting component of their movement-based aggressive display in the presence of increased motion noise highlights the challenge we face in understanding motion-detection mechanisms under natural operating conditions.  相似文献   

2.
In theory, animal signals are designed to optimize transmission across a specific habitat. However, sexual signals characteristics often reflect habitat quality, a feature that does not necessarily match habitat structure. Besides, many species exploit a particular habitat for breeding so that the growth of sexual signals can depend on the additive effects of breeding and non‐breeding habitats. We combined field and experimental data to investigate the relative effect of terrestrial and aquatic habitat on the development of sexual ornaments in the palmate newt, Triturus helveticus. This species exploits a large ecological range of habitats. Like many amphibians, it spends the breeding season in water and the rest of year on land. We tested the influence of terrestrial (forest cover) and aquatic habitat variables (turbidity, organic matter, pH, nitrate and chloride) on male sexual morphology. Neither terrestrial nor aquatic habitat variables accounted for body size variation. In contrast, the size of male sexual traits decreased with water turbidity, suggesting that the expression of visual signals matched the local conditions of signal transmission. We provide experimental evidence that this pattern is not caused by reduced foraging efficiency in turbid water. We propose alternative mechanisms to account for the relationship between turbidity and visual sexual signals, and discuss the consequences of small scale environmental variation on mate choice.  相似文献   

3.
Closely related species often have signals that differ dramatically in design. The evolution of such differences may be important in the process of speciation. Selection for signal detectability under different habitat conditions has been proposed as a mechanism leading to the evolution of signal diversity. We examined dewlap color in four closely related species of Anolis lizards that occupy habitats with different light conditions. Initially, we tested the hypothesis that lizards choose specific light conditions within each habitat in which to signal. We rejected this hypothesis for all four species. We next calculated the detectability of the dewlap color of all four species at display locations in each habitat. If selection for detectability under the different light conditions explained the divergence in signal design, the occupant of a given habitat was predicted to have the highest signal detectability in that habitat. However, the rank order of detectability of the four dewlap colors was nearly the same in all four habitats. We concluded that divergent selection for signal detectability does not, by itself, explain the evolution of dewlap color diversity. We hypothesize that the evolution of dewlap color diversity results from simultaneous selection for multiple functions of dewlap color.  相似文献   

4.
The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white‐crowned sparrows (Zonotrichia leucophrys) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.  相似文献   

5.
Environmental motion delays the detection of movement-based signals   总被引:1,自引:0,他引:1  
Animal signals are constrained by the environment in which they are transmitted and the sensory systems of receivers. Detection of movement-based signals is particularly challenging against the background of wind-blown plants. The Australian lizard Amphibolurus muricatus has recently been shown to compensate for greater plant motion by prolonging the introductory tail-flicking component of its movement-based display. Here I demonstrate that such modifications to signal structure are useful because environmental motion lengthens the time lizard receivers take to detect tail flicks. The spatio-temporal properties of animal signals and environmental motion are thus sufficiently similar to make signal detection more difficult. Environmental motion, therefore, must have had an influence on the evolution of movement-based signals and motion detection mechanisms.  相似文献   

6.
Global population growth has caused extensive human‐induced environmental change, including a near‐ubiquitous transformation of the acoustical environment due to the propagation of anthropogenic noise. Because the acoustical environment is a critical ecological dimension for countless species to obtain, interpret and respond to environmental cues, highly novel environmental acoustics have the potential to negatively impact organisms that use acoustics for a variety of functions, such as communication and predator/prey detection. Using a comparative approach with 308 populations of 183 bird species from 14 locations in Europe, North American and the Caribbean, I sought to reveal the intrinsic and extrinsic factors responsible for avian sensitivities to anthropogenic noise as measured by their habitat use in noisy versus adjacent quiet locations. Birds across all locations tended to avoid noisy areas, but trait‐specific differences emerged. Vocal frequency, diet and foraging location predicted patterns of habitat use in response to anthropogenic noise, but body size, nest placement and type, other vocal features and the type of anthropogenic noise (chronic industrial vs. intermittent urban/traffic noise) failed to explain variation in habitat use. Strongly supported models also indicated the relationship between sensitivity to noise and predictive traits had little to no phylogenetic structure. In general, traits associated with hearing were strong predictors – species with low‐frequency vocalizations, which experience greater spectral overlap with low‐frequency anthropogenic noise tend to avoid noisy areas, whereas species with higher frequency vocalizations respond less severely. Additionally, omnivorous species and those with animal‐based diets were more sensitive to noise than birds with plant‐based diets, likely because noise may interfere with the use of audition in multimodal prey detection. Collectively, these results suggest that anthropogenic noise is a powerful sensory pollutant that can filter avian communities nonrandomly by interfering with birds' abilities to receive, respond to and dispatch acoustic cues and signals.  相似文献   

7.
Many animals communicate using more than one signal, and several hypotheses exist to explain the evolution of multiple signals. However, these hypotheses typically assume static selection pressures, and previous work has not addressed how spatial and temporal environmental variation can shape variation in signaling systems. In particular, environmental variability, such as ambient lighting or noise, may affect efficacy (e.g., detectability/perception by receivers) of signals. To examine how signal expression varies intraspecifically as a function of habitat characteristics, we evaluated relationships between spatial environmental variation and song and plumage color expression in a tropical songbird, the Red‐throated Ant‐tanager (Habia fuscicauda) in Panama. We recorded male ant‐tanager song, plucked feathers to measure coloration, and quantified the acoustic and light environments from each male's territory. In addition, we took several morphological measurements from each male to assess the potential information content of song and plumage color. We found that males with redder and more saturated crown plumage occurred on darker territories, and males that sang shorter and lower frequency songs occurred on noisier territories. We also found that more colorful males tended to sing longer and lower frequency songs. Finally, we found that song and color correlated similarly with male morphology (e.g., tarsus length, body mass). Altogether, these results indicate that spatial variation in the environment is related to male coloration and song, and that males might be optimizing color and song expression for their particular territorial environment.  相似文献   

8.
Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co‐evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co‐phylogenetic congruence of plant–animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower‐visiting insects than plants. Phylogenetic signal and overall co‐phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co‐phylogenetic correspondence in plant–pollinator interactions could be associated with less reliable mutualism and erratic co‐evolutionary change.  相似文献   

9.
The extraction of the direction of motion from the time varying retinal images is one of the most basic tasks any visual system is confronted with. However, retinal images are severely corrupted by photon noise, in particular at low light levels, thus limiting the performance of motion detection mechanisms of what sort so ever. Here, we study how photon noise propagates through an array of Reichardt-type motion detectors that are commonly believed to underlie fly motion vision. We provide closed-form analytical expressions of the signal and noise spectra at the output of such a motion detector array. We find that Reichardt detectors reveal favorable noise suppression in the frequency range where most of the signal power resides. Most notably, due to inherent adaptive properties, the transmitted information about stimulus velocity remains nearly constant over a large range of velocity entropies. Action editor: Matthew Wiener  相似文献   

10.
Community structure at local scales is a major factor controlling population and community dynamics of plant species. Dicerandra immaculata Lakela var. immaculata (Lamiaceae) is a critically endangered plant known only from a few locations in scrub habitat in Florida. Using seven sites where populations of D. immaculata were wild, introduced, and/or extirpated, we sought to answer the following questions: (1) how do habitat characteristics at locations supporting wild D. immaculata plants vary from random locations within the same habitat; (2) how do habitat characteristics differ between wild and extirpated populations; and (3) how do habitat characteristics differ between wild and introduced populations? At locations of wild D. immaculata, community structure had fewer woody stems, shorter understory vegetation, lower percent canopy coverage, and lower percent ground cover of detritus than random locations and locations with extirpated D. immaculata. In addition, bare ground decreased at extirpated locations because other plant species expanded their coverage, water saturation of the soil increased, diversity of shrubs decreased, and composition of the overstory changed compared to that of wild locations. Habitat characteristics associated with introduced plants were more similar to characteristics at randomly chosen locations than those with wild plants. However, introduced plants tended to occupy locations that had drier soil, a higher abundance of conspecifics, and a higher proportion of woody understory plants than that of random locations. Overall, gaps in the canopy and at ground level are likely essential for survival and recruitment of D. immaculata.  相似文献   

11.
Anthropogenic noise is prevalent across the globe and can exclude birds from otherwise suitable habitat and negatively influence fitness; however, the mechanisms responsible for species' responses to noise are not always clear. One effect of noise is a reduction in effective acoustic communication through acoustic masking, yet some urban songbirds may compensate for masking by noise through altering their songs. Whether this vocal flexibility accounts for species persistence in noisy areas is unknown. Here, we investigated the influence of noise on habitat use and vocal frequency in two suboscine flycatchers using a natural experiment that isolated effects of noise from confounding stimuli common to urban habitats. With increased noise exposure, grey flycatcher (Empidonax wrightii) occupancy declined, but vocal frequency did not change. By contrast, ash-throated flycatcher (Myiarchus cinerascens) occupancy was uninfluenced by noise, but individuals in areas with greater noise amplitudes vocalized at a higher frequency, although the increase (≈200 kHz) may only marginally improve communication and may represent a secondary effect from increased vocal amplitude. Even so, the different flycatcher behavioural responses suggest that signal change may help some species persist in noisy areas and prompt important questions regarding which species will cope with an increasingly noisy world.  相似文献   

12.
During the past five years the structure of nodulation signals from more than a dozen different Rhizobium species has been elucidated. In addition, the role of numerous nod genes in the biosynthesis of the lipooligosaccharides has been identified. This review discusses how Nod signal structure is determined by the specificity of the various biosynthetic steps and how this influences variation in host specificity. Until recently, it appeared that the decorations of a common lipochitooligosaccharide core determine the host-specific recognition of the signals, possibly via specific receptors in the host plant cell. A number of recent publications, however, suggest that beyond the interaction of Nod signals with a putative receptor, certain structural features of Nod factors are involved in controlling the concentration of the signals during their uptake by the root tissue.The authors are with the Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France; A. Kondorosi is also with the Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences P.O Box 521, H-6701 Szeged, Hungary.  相似文献   

13.
The regeneration of whole plants from fragments of mature organs is compelling evidence that plant cells retain genetic totipotency throughout differentiation. Within the intact plant, however, strict regulatory controls operate to maintain a co-ordinated pattern of growth. Not every cell differentiates along the same developmental pathway. Cell performance is determined by mechanisms that permit subtle discriminations in recognition of and response to an array of environmental and hormonal cues. Much effort is currently directed to understanding these control systems in plants. Certain positionally differentiated cells and tissues have been characterized by their specific signal recognition and their precise responses in gene expression. In a few, the competence to respond to particular signals has been distinguished by the presence of cell-specific protein markers. This article discusses some recent studies that help towards an understanding of the target nature of cells in plant development.  相似文献   

14.
Recent investigations have suggested that some plants are aposematic. Our understanding of how aposematism varies through plant ontogeny, however, is incomplete. Furthermore, the potential for lower leaf surfaces to signal to vertebrate herbivores that are viewing leaves from below has not been investigated. Here, we investigate ontogenetic changes in leaf colour in Pseudopanax crassifolius (Araliaceae), a tree species that is endemic to New Zealand. We demonstrate that P. crassifolius produces lateral leaf spines that peak in size during the sapling stage of development. Spots of brightly coloured tissues on the upper leaf surfaces may be warning signals. The intensity of these signals, however, peaked at the seedling stage, providing a dishonest signal of defence. Conversely, signals on lower leaf surfaces peaked in the sapling stage, providing an honest defensive signal later in ontogeny. Lateral leaf spines and all potential warning colours were absent in adults, after they grow above the reach of the largest known native megaherbivores (moa – Aves: Dinornithiformes). Overall, these results suggest that aposematism may vary predictably through plant ontogeny in response to the changing perspective of herbivores as plants grow vertically.  相似文献   

15.
Sexual ornaments are used both in intra‐ and intersexual contexts, and these signals have evolved to function in the particular habitat the animal is adapted to. Habitat characteristics may, however, change rapidly due to anthropogenic effects, sometimes at rates too fast for many organisms to adaptively respond. In aquatic ecosystems, eutrophication is currently changing chemical as well as visual properties of the environment. Algae blooms increase water turbidity, and the reduction of water transparency thus has the potential to alter visual ornaments and their perception. However, results are not congruent. Rather, algae turbidity may decrease, increase, or leave ornaments unaffected. The effect seems to depend on exposure time, condition, population and species. Here, we found that the perception of sexual signals, but not their expression, was hampered by turbidity in the sex‐role‐reversed pipefish Nerophis ophidion. In a laboratory experiment we found that female sexual ornaments (i.e., blue color markings and a skinfold) and fecundity was unaffected by turbidity. Male adaptive mate choice for larger females with large ornament was, however, hampered under turbid conditions, whereas in clear water males choose larger, more ornamented females. Thus, we show that water turbidity had no effect on signal expression but did hamper ornament perception and consequently randomized mate choice.  相似文献   

16.
It is evident that the environment has the potential to affect animal communication strategies. Species from diverse taxonomic groups using signals from different modalities are known to generate signals that suit the structure of their habitat in order to maximize efficiency. Studies of acoustically communicating species dominate the literature, but visual signals are also tailored to local conditions. There is now increasing evidence that dynamic visual signals, in the form of movement‐based displays, are also influenced by habitat characteristics. Australia's dragon lizards (Family: Agamidae) employ such dynamic signals in a variety of contexts but are particularly common in territory defence. With a few notable exceptions, the signalling behaviour of this group has been relatively overlooked, and the knowledge that does exist is contained in scientific papers focused on other topics or unpublished accounts from herpetologists. In this review, we collated information on the signalling behaviour of these animals and determined that 34 of the 78 species use movement‐based signalling. This number is likely to be an underestimate, as knowledge of the signalling behaviour of many species is lacking. The richly contrasting environments of Australia inhabited by these lizards provide considerable variation in ecological context, so our second objective was to place known signalling behaviour in the context of species ecology. After controlling for phylogeny, we found that broad habitat classifications do not strongly influence the likelihood of motion signalling, and specific motor patterns are not more likely to occur in particular microhabitats. We conclude by suggesting that fully understanding the motion signalling behaviour of Australia's agamids will require documenting the displays of species for which there are no data, while taking into account the high variability existing within motor patterns and considering in detail the environmental context under which signalling takes place.  相似文献   

17.
We have studied the detection, by human observers, of suprathreshold bandlimited signals embedded at various locations in non-white, Gaussian filtered noise. Detection models based upon the direct cross-correlation between the signal and the noise image (matched filtering) cannot account for the results of our experiments. Our findings point instead at a detection process occurring at the level of signal decomposition, and jointly determined by: (a) the differential outputs of discrete, bandlimited spatial analyzers selectively responsive to different components of the signal; and (b) variable detection rules adaptively related to such outputs and to the type of signal information available to the observer.  相似文献   

18.
Lack of basic biological information is a key limiting factor in conservation of at-risk butterflies. In the Puget prairies of Washington State little is known about the habitat requirements of mardon skipper (Polites mardon, federal candidate, WA endangered). We investigated oviposition site selection and used our results to assess oviposition habitat quality at a restored site with reintroduction potential. During the 2009 flight season we marked eighty-eight eggs and sampled vegetation at oviposition and random locations, measuring habitat variables with respect to the oviposition plant, vegetation structure, and vegetation cover. Eighty-six of the eighty-eight eggs were laid on Festuca roemeri, a native, perennial bunchgrass. Discriminant function analysis revealed selection of oviposition sites based on habitat structure; females laid eggs in small F. roemeri tufts in sparsely vegetated areas of the prairie. These results are contrary to results from a previous study in the Cascade Mountains of WA where females are generalists and selected densely vegetated areas, suggesting that the species has geographically specific habitat requirements. To assess oviposition habitat at a potential reintroduction site we measured the six variables most important for oviposition at the occupied site and a proposed reintroduction site. Results revealed differences in habitat quality between locations and suggest a need for further habitat management at the reintroduction site. Our results highlight the importance of understanding the local habitat use of a rare species where restoration activities occur and increase our ability to target habitat management where it is most needed for the persistence of the species.  相似文献   

19.
The northwestern distributions of several steppe species of Orthoptera extend to the southeastern part of the Czech Republic (Pannonia) and occupy more or less isolated fragments of optimal habitats. Their distributional limits are not conditioned by macroclimate in most cases but reflect landscape development (physical structure, plant community type and microclimate) and the insects’ dispersal abilities. These species prefer permanent grassland, and assessment of land use records indicates that the area occupied by permanent grassland has been greatly reduced by agriculture over the last two centuries. The area occupied by permanent grasslands in Pannonia was highest in the nineteenth century, declined until the second half of the twentieth century, and slightly increased at the beginning of the twenty first century. These changes in the area of permanent grassland generally reflect economic and political processes; in particular, consolidation of land plots and expropriation of private property brought an end to grazing. The distribution of a model Orthoptera specialist, Platycleis vittata, on steppe habitats was surveyed at 48 potentially suitable locations from 2004 to 2010. The survey determined that the area with suitable habitat is currently very limited at all 48 locations. Occurrence was confirmed in just two locations that are 3 km apart. The research suggests that Platycleis vittata in the Czech Republic is on the brink of extinction because of extreme fragmentation of suitable biotopes and degradation of optimal habitats.  相似文献   

20.
In situ hybridization (ish) allows the visualization of gene expression in tissues at high microscopic resolution. Interference by plant tissue pigments generally confers higher sensitivity to radioactiveish, relative to non-radioactiveish using hapten labeled probes. The increased resolution is partially due to image acquisition methods in radioactiveish experiments. However, radioactiveish has many drawbacks including short probe life, safety concerns associated with the use of radioactive materials, and slow development of signal. In this report, we show how commercially available image analysis software can be used to extract data from non-radioactiveish images to gain a substantial increase in resolution. We provide a comparison between detecting a probe (CELLULOSE SYNTHASE) that is expected to produce a consistent, detectable signal in all growing tissues with detection of a probe (LEAFY)that is expected to produce a signal only in specific tissues. Although the scientific content of this article has been reviewed,the full-text Web publication has not been edited in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号