首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We transformed three potato (Solanum tuberosum L.) genotypes by using A. rhizogenes or a mixture of A. rhizogenes and A. tumefaciens. Inoculations of potato stem segments were performed with Agrobacterium rhizogenes AM8703 containing two independent plasmids: the wild-type Ri-plasmid, pRI1855, and the binary vector plasmid, pBI121. In mixed inoculation experiments, Agrobacterium rhizogenes LBA1334 (pRI1855) and Agrobacterium tumefaciens AM8706 containing the disarmed Ti-plasmid (pAL4404) and the binary vector plasmid (pBI121) were mixed in a 11 ratio. The T-DNA of the binary vector plasmid pBI121 contained two marker genes encoding neomycin phosphotransferase, which confers resistance to kanamycin, and -glucuronidase. Both transformation procedures gave rise to hairy roots on potato stem segments within 2 weeks. With both procedures it was possible to obtain transformed hairy roots, able to grow on kanamycin and possessing -glucuronidase activity, without selection pressure. The efficiency of the A. rhizogenes AM8703 transformation, however, was much higher than that of the mixed transformation. Up to 60% of the hairy roots resulting from the former transformation method were kanamycin resistant and possessed -glucuronidase activity. There was no correlation between the height of the kanamycin resistance and that of the -glucuronidase activity in a root clone. Hairy roots obtained from a diploid potato genotype turned out to be diploid in 80% of the cases. Transformed potato plants were recovered from Agrobacterium rhizogenes AM8703-induced hairy roots.  相似文献   

3.
Summary Transgenic shoots were regenerated from eight diploid potato hairy root clones obtained by transformation with Agrobacterium rhizogenes harboring next to its wild-type Ri-plasmid a binary vector containing the neomycin phosphotransferase and the -glucuronidase genes. The plants exhibited the typical hairy root phenotype. Of the plants isolated, 58% were tetraploid and 38% were diploid. Flowering and tuberization was much better in the diploid than in the tetraploid plants. Transgenic plants formed a significantly larger root system when grown on kanamycin-containing medium as compared to growth on kanamycin-free medium. Direct evidence for genetic transformation was obtained by opine, neomycin phosphotransferase and -glucuronidase assays, and by molecular hybridization. Fourteen flowering diploid plants were reciprocally crossed with untransformed S. tuberosum plants, but only six were successful. Seedlings obtained from four crosses showed that all traits were transmitted to the offspring. Molecular analysis confirmed the presence of multiple integrations (copies) of both vector T-DNA and Ri-T-DNA. The genetic data, furthermore, suggest that the traits derived from Ri-T-DNA and binary vector T-DNA are linked, as no recombination between the different traits was observed.  相似文献   

4.
5.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

6.
Summary A modified polyacrylamide gel electrophoresis technique is employed to resolve proteins for use as biochemical gene markers in potato. Dominant, duplicate dominant and complementary gene action are three modes of inheritance that adequately explain the segregation of three respective protein bands in two generations of crossing within diploid Phureja X haploid Tuberosum families.Scientific Journal Seires Article 10,171 of the Minnesota Agricultural Experiment Station  相似文献   

7.
In vitro culture was used to study morphogenetic aspects of the tuberization process under controlled conditions in potato (Solanum tuberosum L.) plants. This paper accurately defines four stages of tuber development and their correlation to external morphological characteristics and histological structures. Protein kinase activity, assayed in each stage using Historic HAS as substrate, was differentially expressed during the tuberization process. Phosphorylation was maximum in the first stages of tuber formation. The incorporation of [32PO4 –1] to endogenous peptides containing serine/threonine amino acidic residues followed the same pattern that the protein kinase activity did.Abbreviations EDTA Ethylenediaminetetraacetic acid - EGTA ethylenebis (oxyethylenenitrilo) tetraacetic acid - MOPS 4-morpholine-propanesulfonic acid  相似文献   

8.
9.
Allotriploid somatic hybrids were obtained from fusions between protoplasts of diploid tomato and monohaploid potato. The selection of fusion products was carried out in two different ways: (1) The fusion of nitrate reductase-deficient tomato with potato gave rise only to hybrid calli if selection was performed on media lacking ammonium. Parental microcalli were rarely obtained and did not regenerate. (2) The fusion of cytoplasmic albino tomato with potato gave rise to albino and green hybrid calli and plants. Allotriploids were identified from the two somatic hybrid populations by counting chloroplast numbers in leaf guard cells and by flow cytometry of leaf tissue. Although some pollen fertility of allotriploids and pollen-tube growth of tomato, potato andLycopersicon pennellii into the allotriploid style were observed, no progeny could be obtained. The relevance of allotriploid somatic hybrids in facilitating limited gene transfer from potato to tomato is discussed.  相似文献   

10.
Potato plants grown in vitro were subjected to different salt stresses by providing the salts NaCl, Na2SO4, MgCl2 and MgSO4 in different concentrations up to 300 mM. Salinity greatly affected the survival and the rooting of the plants. Shoot and root growth decreased with increasing salt concentrations. Under mild stress conditions, i.e. in conditions where the plant is able to adapt to the stress, the observed decrease was dependent upon the salt used. Under severe stress conditions, however, the decrease of the shoot and root growth was independent of the nature of the ions.  相似文献   

11.
Single-node cuttings of potato cultivars Jemseg, Katahdin, Russet Burbank and Superior were cultured on a multiplication medium containing MS salts and no growth regulators. Cultures were exposed to 8 h (SD) and 16 h (LD) photoperiodic regimes. The subsequent plantlets were excised and single node cuttings from each photoperiodic regime were placed under SD or LD on a second medium containing growth regulators which promoted tuberization. Production of microtubers was strongly influenced by genotype and by photoperiodic treatments. Superior produced stunted plantlets and some microtubers under SD conditions in the multiplication medium. The number of microtubers formed by Jemseg was not influenced by photoperiod. However, Katahdin and Russet Burbank formed fewer microtubers under LD-LD conditions compared to LD-SD, SD-SD and SD-LD regimes. Compared with the other regimes, LD-SD photoperiod generally promoted microtuber formation with larger diameters and significantly (p<0.05) greater fresh weight. The intensity of the tuberization stimulus was affected by daylength, and this was characterized by microtubers with secondary tubers, the growth of more than one axillary microtuber, and microtubers subtended by stolons. The maturity group of the potato cultivars and photoperiodic regime in vitro strongly influenced the production of microtubers. These results can be employed to adapt light regimes for multiplication and tuberization to the specific requirements for cultivars from different maturity groups, and thus increase the efficiency of potato multiplication protocols.  相似文献   

12.
Summary An amylose-free potato mutant was isolated after screening 12,000 minitubers. These minitubers had been induced on stem segments of adventitious shoots, which had been regenerated on leaf explants of a monoploid potato clone after Röntgen-irradiation. The mutant character is also expressed in subterranean tubers and in microspores. Starch granules from the mutant showed a strongly reduced activity of the granule bound starch synthase and loss of the major 60 kd protein from the starch granules.  相似文献   

13.
Agrobacterium rhizogenes transformed and control roots of the tetraploid potato cv. Bintje were compared. Transformed roots were obtained after infection by A. rhizogenes 15834 or 1855. Both in leaf and stem segments, more roots were formed at the basal side of the segments, indicative for a polarity in root formation. As compared to control roots the transformed roots are characterized by smaller and more densely stained cells, a zone of cell division, and smaller statoliths. These characteristics are correlated with vigorous growth, high branching incidence and diminished geotropism. The plant regeneration procedure according to Ooms et al. [1] was modified. The transformed roots required less 2,4-D than control roots for the induction of shoot-competent calli. The callus and shoot induction phases were reduced from 8 and 6 weeks to 3 and 3 weeks, respectively. Upon induction, 25%, 58% and 61% of the root clones originating from tuber, stem and leaf, respectively, produced shoots, whereas all of the control roots produced shoots. Shoot outgrowth occurred on liquid MS medium in the absence of hormones.Abbreviations Ri-root Agrobacterium rhizogenes transformed root - BAP benzylaminopurine - IAA indoleacetic acid - GA3 gibberellic acid - NAA naphthaleneacetic acid - 2,4-D 2,4 dichlorophenoxyacetic acid  相似文献   

14.
15.
Roberto Viola 《Planta》1996,198(2):186-196
Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 mol · hexose · g FW–1 · h–1 in the absence of exogenous glucose to 3.7 mol · hexose · g FW–1 · h–1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.Abbreviations ADPGlc adenosine 5-diphosphoglucose - Glc6P glucose-6-phosphate - hexose-P hexose phosphate - NMR nuclear magnetic resonance - UDPGlc uridine 5-diphosphoglucose Many thanks to L. Sommerville for skillfull assistance and to J. Crawford and J. Liu for useful discussions on flux analysis. The research was funded by the Scottish Office Agriculture and Fisheries Department.  相似文献   

16.
Genetically transformed grapevine (Vitis vinifera L.) roots were obtained after inocultation of in vitro grown whole plants (cv. Grenache) with Agrobacterium rhizogenes. The strain used contains two plasmids: the wild-type Ri plasmid pRi 15834 and a Ti-derived plasmid which carries a chimaeric neomycin phosphotrans-ferase gene (NPT II) and the nopaline synthase gene. Expression of the NPT II gene can confer kanamycin resistance to transformed plant cells. Slowly growing axenic root cultures derived from single root tips were obtained. Opine analysis indicated the presence of agropine and/or nopaline in established root cultures. For one culture, the presence of T-DNA was confirmed by dot-blot hybridization with pRi 15834 TL-DNA. Callogenesis was induced by subculturing root fragments on medium supplemented with benzylaminopurine and indoleacetic acid.Transformation of in vitro cultured grapevine cells has recently been reported (baribault T.J. et al., Plant Cell Rep (1989) 8: 137–140). In contrast with the results presented here, expession of the NPT II gene Conferred kanamycin resistance to Vitis vinifera calli that was sufficient for selection of trasformed cells.Abbreviations BAP benzylaminopurine - IAA indoleacetic acid - NAA naphtaleneacetic acid - NPT II neomycin phosphostransferase II - EDTA ethylenediaminetetraacetic acid  相似文献   

17.
A genomic DNA clone encoding an aspartic proteinase inhibitor of potato was isolated from a lambda EMBL3 phage library using the aspartic proteinase inhibitor cDNA as a hybridization probe. The gene has all characteristic sequences normally found in eucaryotic genes. Typical CAAT and TATA box sequences were found in the 5-upstream region. In this part are also two putative regulatory AGGA box sequences located. In the genomic sequence there are no intron sequences interrupting the coding region. An open reading frame of the gene encodes a precursor protein of 217 amino acids which shows high percent identity with the aspartic proteinase inhibitor cDNA.  相似文献   

18.
19.
R. Viola  H. V. Davies  A. R. Chudeck 《Planta》1991,183(2):202-208
Tissue slices from developing potato tubers (Solanum tuberosum L.) and developing cotyledons of faba bean (Vicia faba L.) were incubated with specifically labelled [13C]glucose and [13C]ribose. Enriched[13C]glucose released from starch granules was analysed by nuclear magnetic resonance (NMR). Spectral analyses were also performed on sucrose purified by high-performance liquid chromatography. In both tissues a low degree of randomisation (< 11 % in potato and < 14% in Vicia) was observed between carbon positions 1 and 6 in glucose released from starch when material was incubated with [13C]glucose labelled in positions 6 and 1, respectively. Similarly, with [2-13C]glucose a low degree of randomisation was observed in position 5. These findings indicate that extensive transport of three-carbon compounds across the amyloplast membrane does not occur in storage organs of either species. This is in agreement with previously published data which indicates that sixcarbon compounds are transported into the plastids during active starch synthesis. When [1-13C]ribose was used as a substrate, 13C-NMR spectra of starch indicated the operation of a classical pentose-phosphate pathway. However, with [2-13C]glucose there was no preferential enrichment in either carbon positions 1 or 3 relative to 4 or 6 of sucrose and starch (glucose). This provides evidence that entry of glucose in this pathway may be restricted in vivo. In both faba bean and potato the distribution of isotope between glucosyl and fructosyl moieties of sucrose approximated 50%. The degree of randomisation within glucosyl and fructosyl moieties ranged between 11 and 19.5%, indicating extensive recycling of triose phosphates.Abbreviation NMR nuclear magnetic resonance We are grateful to Dr. George Ratcliffe for his critical reading of the text and Dr. Bernard Goodman for helpful suggestions on the NMR measurements. The research was funded by a European Economic Community research grant, which the authors duly acknowledge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号