首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced ∼10 Å toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 310-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network.  相似文献   

2.
The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.  相似文献   

3.
The Kv3.1 channel plays a crucial role in regulating the high-frequency firing properties of neurons. Here, we determined whether Src regulates the subcellular distributions of the Kv3.1b channel. Co-expression of active Src induced a dramatic redistribution of Kv3.1b to the endoplasmic reticulum. Furthermore, co-expression of the Kv3.1b channel with active Src induced a remarkable decrease in the pool of Kv3.1b at the cell surface. Moreover, the co-expression of active Src results in a significant decrease in the peak current densities of the Kv3.1b channel, and a substantial alteration in the voltage dependence of its steady-state inactivation. Taken together, these results indicate that Src kinase may play an important role in regulating membrane trafficking of Kv3.1b channels.  相似文献   

4.
N-Glycosylation is a cotranslational and post-translational process of proteins that may influence protein folding, maturation, stability, trafficking, and consequently cell surface expression of functional channels. Here we have characterized two consensus N-glycosylation sequences of a voltage-gated K+ channel (Kv3.1). Glycosylation of Kv3.1 protein from rat brain and infected Sf9 cells was demonstrated by an electrophoretic mobility shift assay. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced a much faster-migrating Kv3.1 immunoband than that of undigested brain membranes. To demonstrate N-glycosylation of wild-type Kv3.1 in Sf9 cells, cells were treated with tunicamycin. Also, partially purified proteins were digested with either PNGase F or endoglycosidase H. Attachment of simple-type oligosaccharides at positions 220 and 229 was directly shown by single (N229Q and N220Q) and double (N220Q/N229Q) Kv3.1 mutants. Functional measurements and membrane fractionation of infected Sf9 cells showed that unglycosylated Kv3.1s were transported to the plasma membrane. Unitary conductance of N220Q/N229Q was similar to that of the wild-type Kv3.1. However, whole cell currents of N220Q/N229Q channels had slower activation rates, and a slight positive shift in voltage dependence compared to wild-type Kv3.1. The voltage dependence of channel activation for N229Q and N220Q was much like that for N220Q/N229Q. These results demonstrate that the S1-S2 linker is topologically extracellular, and that N-glycosylation influences the opening of the voltage-dependent gate of Kv3.1. We suggest that occupancy of the sites is critical for folding and maturation of the functional Kv3.1 at the cell surface.  相似文献   

5.
6.
7.
《Biophysical journal》2020,118(10):2612-2620
Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel’s SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa. The second threonine of the SF signature sequence (e.g., TTVGYG) has been proven to be essential for this allosteric coupling. To further study the role of the SF in U-type inactivation, we substituted the second threonine of the TTVGYG sequence by an alanine in the hKv2.1 and hKv3.1 channels, which are known to display U-type inactivation. Both hKv2.1-T377A and hKv3.1-T400A yielded channels that were resistant to inactivation, and as a result, they displayed noninactivating currents upon channel opening; i.e., hKv2.1-T377A and hKv3.1-T400A remained fully conductive upon prolonged moderate depolarizations, whereas in wild-type hKv2.1 and hKv3.1, the current amplitude typically reduces because of U-type inactivation. Interestingly, increasing the extracellular K+ concentration increased the macroscopic current amplitude of both hKv2.1-T377A and hKv3.1-T400A, which is similar to the response of the homologous T to A mutation in Shaker and hKv1.5 channels that display C-type inactivation. Our data support an important role for the second threonine of the SF signature sequence in the U-type inactivation gating of hKv2.1 and hKv3.1.  相似文献   

8.
Voltage-gated potassium channels related to the Shal gene of Drosophila (Kv4 channels) mediate a subthreshold-activating current (ISA) that controls dendritic excitation and the backpropagation of action potentials in neurons. Kv4 channels also exhibit a prominent low voltage–induced closed-state inactivation, but the underlying molecular mechanism is poorly understood. Here, we examined a structural model in which dynamic coupling between the voltage sensors and the cytoplasmic gate underlies inactivation in Kv4.2 channels. We performed an alanine-scanning mutagenesis in the S4-S5 linker, the initial part of S5, and the distal part of S6 and functionally characterized the mutants under two-electrode voltage clamp in Xenopus oocytes. In a large fraction of the mutants (>80%) normal channel function was preserved, but the mutations influenced the likelihood of the channel to enter the closed-inactivated state. Depending on the site of mutation, low-voltage inactivation kinetics were slowed or accelerated, and the voltage dependence of steady-state inactivation was shifted positive or negative. Still, in some mutants these inactivation parameters remained unaffected. Double mutant cycle analysis based on kinetic and steady-state parameters of low-voltage inactivation revealed that residues known to be critical for voltage-dependent gate opening, including Glu 323 and Val 404, are also critical for Kv4.2 closed-state inactivation. Selective redox modulation of corresponding double-cysteine mutants supported the idea that these residues are involved in a dynamic coupling, which mediates both transient activation and closed-state inactivation in Kv4.2 channels.  相似文献   

9.
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization. More surprisingly, slow inactivation of the Kv1 Shaker K(+) channel (Shaker B Delta 6--46) also has a U-shaped voltage dependence for 10-s depolarizations. The time and voltage dependence of recovery from inactivation reveals two distinct components for Shaker. Strong depolarizations favor inactivation that is reduced by K(o)(+) or by partial block by TEA(o), as previously reported for slow inactivation of Shaker. However, depolarizations near 0 mV favor inactivation that recovers rapidly, with strong voltage dependence (as for Kv2.1 and 3.1). The fraction of channels that recover rapidly is increased in TEA(o) or high K(o)(+). We introduce the term U-type inactivation for the mechanism that is dominant in Kv2.1 and Kv3.1. U-type inactivation also makes a major but previously unrecognized contribution to slow inactivation of Shaker.  相似文献   

10.
11.
The loop between transmembrane regions S5 and S6 (P-region) of voltage-gated K+ channels has been proposed to form the ion-conducting pore, and the internal part of this segment is reported to be responsible for ion permeation and internal tetraethylammonium (TEA) binding. The two T-cell K+ channels, Kv3.1 and Kv1.3, with widely divergent pore properties, differ by a single residue in this internal P-region, leucine 401 in Kv3.1 corresponding to valine 398 in Kv1.3. The L401V mutation in Kv3.1 was created with the anticipation that the mutant channel would exhibit Kv1.3-like deep-pore properties. Surprisingly, this mutation did not alter single channel conductance and only moderately enhanced internal TEA sensitivity, indicating that residues outside the P-region influence these properties. Our search for additional residues was guided by the model of Durell and Guy, which predicted that the C-terminal end of S6 formed part of the K+ conduction pathway. In this segment, the two channels diverge at only one position, Kv3.1 containing M430 in place of leucine in Kv1.3. The M430L mutant of Kv3.1 exhibited permeant ion- and voltage-dependent flickery outward single channel currents, with no obvious changes in other pore properties. Modification of one or more ion-binding sites located in the electric field and possibly within the channel pore could give rise to this type of channel flicker.  相似文献   

12.
Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual α-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 α-subunits are able to form heterotetramers with members of the silent Kv subfamilies (Kv5, Kv6, Kv8, and Kv9). The T1 domain contains two subdomains, A and B box, which presumably determine subfamily specificity by preventing incompatible subunits to assemble. In contrast, little is known about the involvement of the A/B linker sequence. Both Kv2 and silent Kv subfamilies contain a fully conserved and negatively charged sequence (CDD) in this linker that is lacking in the other subfamilies. Neutralizing these aspartates in Kv2.1 by mutating them to alanines did not affect the gating properties, but reduced the current density moderately. However, charge reversal arginine substitutions strongly reduced the current density of these homotetrameric mutant Kv2.1 channels and immunocytochemistry confirmed the reduced expression at the plasma membrane. Förster resonance energy transfer measurements using confocal microscopy showed that the latter was not due to impaired trafficking, but to a failure to assemble the tetramer. This was further confirmed with co-immunoprecipitation experiments. The corresponding arginine substitution in Kv6.4 prevented its heterotetrameric interaction with Kv2.1. These results indicate that these aspartates (especially the first one) in the A/B box linker of the T1 domain are required for efficient assembly of both homotetrameric Kv2.1 and heterotetrameric Kv2.1/silent Kv6.4 channels.  相似文献   

13.
The Kv3.1 potassium channel is expressed at high levels in auditory nuclei and contributes to the ability of auditory neurons to fire at high frequencies. We have tested the effects of streptomycin, an agent that produces progressive hearing loss, on the firing properties of inferior colliculus neurons and on Kv3.1 currents in transfected cells. We found that in inferior colliculus neurons, intracellular streptomycin decreased the current density of a high threshold, noninactivating outward current and reduced the rate of repolarization of action potentials and the ability of these neurons to fire at high frequencies. Furthermore, potassium current in CHO cells transfected with the Kv3.1 gene was reduced by 50% when cells were cultured in the presence of streptomycin or when streptomycin was introduced intracellularly in the pipette solution. In the presence of intracellular streptomycin, the activation rate of Kv3.1 current increased and inhibition by extracellular TEA become voltage-dependent. The data indicate that streptomycin inhibits Kv3.1 currents by inducing a conformational change in the Kv3.1 channel. The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons.  相似文献   

14.
N-type Inactivation Features of Kv4.2 Channel Gating   总被引:12,自引:0,他引:12  
We examined whether the N-terminus of Kv4.2 A-type channels (4.2NT) possesses an autoinhibitory N-terminal peptide domain, which, similar to the one of Shaker, mediates inactivation of the open state. We found that chimeric Kv2.1(4.2NT) channels, where the cytoplasmic Kv2.1 N-terminus had been replaced by corresponding Kv4.2 domains, inactivated relatively fast, with a mean time constant of 120 ms as compared to 3.4 s in Kv2.1 wild-type. Notably, Kv2.1(4.2NT) showed features typically observed for Shaker N-type inactivation: fast inactivation of Kv2.1(4.2NT) channels was slowed by intracellular tetraethylammonium and removed by N-terminal truncation (Δ40). Kv2.1(4.2NT) channels reopened during recovery from inactivation, and recovery was accelerated in high external K+. Moreover, the application of synthetic N-terminal Kv4.2 and ShB peptides to inside-out patches containing slowly inactivating Kv2.1 channels mimicked N-type inactivation. Kv4.2 channels, after fractional inactivation, mediated tail currents with biphasic decay, indicative of passage through the open state during recovery from inactivation. Biphasic tail current kinetics were less prominent in Kv4.2/KChIP2.1 channel complexes and virtually absent in Kv4.2Δ40 channels. N-type inactivation features of Kv4.2 open-state inactivation, which may be suppressed by KChIP association, were also revealed by the finding that application of Kv4.2 N-terminal peptide accelerated the decay kinetics of both Kv4.2Δ40 and Kv4.2/KChIP2.1 patch currents. However, double mutant cycle analysis of N-terminal inactivating and pore domains indicated differences in the energetics and structural determinants between Kv4.2 and Shaker N-type inactivation.  相似文献   

15.
Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function.  相似文献   

16.
The gating of voltage-gated ion channels is controlled by the arginine-rich S4 helix of the voltage-sensor domain moving in response to an external potential. Recent studies have suggested that S4 moves in three to four steps to open the conducting pore, thus visiting several intermediate conformations during gating. However, the exact conformational changes are not known in detail. For instance, it has been suggested that there is a local rotation in the helix corresponding to short segments of a 3-helix moving along S4 during opening and closing. Here, we have explored the energetics of the transition between the fully open state (based on the X-ray structure) and the first intermediate state towards channel closing (C), modeled from experimental constraints. We show that conformations within 3 Å of the X-ray structure are obtained in simulations starting from the C model, and directly observe the previously suggested sliding 3-helix region in S4. Through systematic free energy calculations, we show that the C state is a stable intermediate conformation and determine free energy profiles for moving between the states without constraints. Mutations indicate several residues in a narrow hydrophobic band in the voltage sensor contribute to the barrier between the open and C states, with F233 in the S2 helix having the largest influence. Substitution for smaller amino acids reduces the transition cost, while introduction of a larger ring increases it, largely confirming experimental activation shift results. There is a systematic correlation between the local aromatic ring rotation, the arginine barrier crossing, and the corresponding relative free energy. In particular, it appears to be more advantageous for the F233 side chain to rotate towards the extracellular side when arginines cross the hydrophobic region.  相似文献   

17.
18.
Activity of voltage-gated Cav1.3 L-type Ca2+ channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V.  相似文献   

19.
A proper motor activity relies on a correct cerebellar function. The Kv3.1 and Kv3.3 voltage-gated potassium channels are key proteins involved in cerebellar function and dysfunction, as the lack of these causes severe motor deficits. Both channel subunits are coexpressed in granule cells and are rapidly activated at relatively positive potentials to support the generation of fast action potentials. However, the contribution of each subunit to the molecular architecture of the parallel fibers, the granule cell axons, is so far unknown. The goal of this study was to elucidate the relative distribution of Kv3.1b and Kv3.3 in specific compartments of the rat parallel fibers by using a pre-embedding immunocytochemical method for electron microscopy. Numerous Kv3.1b and Kv3.3 silver-intensified gold particles were associated with membranes of parallel fiber synaptic terminals and their intervaricose segments. Kv3.1b was found in about 85% of parallel fiber synaptic terminals and in about 47% of their intervaricose portions. However, only 28% of intervaricosities and 23% of parallel fiber presynaptic boutons were Kv3.3 immunopositive. The analysis also revealed that 54% of Purkinje cell dendritic spines localized Kv3.3. Although both potassium channel subunits share localization in the same presynaptic parallel fiber compartments, the present results with the method used indicate that there are a higher percentage of parallel fibers labeled for Kv3.1b than for Kv3.3, and that the labeling intensity for each subunit is higher in specific subcompartments analyzed than in others.  相似文献   

20.
The sialic acid of complex N-glycans can be biochemically engineered by substituting the physiological precursor N-acetylmannosamine with non-natural N-acylmannosamines. The Kv3.1 glycoprotein, a neuronal voltage-gated potassium channel, contains sialic acid. Western blots of the Kv3.1 glycoprotein isolated from transfected B35 neuroblastoma cells incubated with N-acylmannosamines verified sialylated N-glycans attached to the Kv3.1 glycoprotein. Outward ionic currents of Kv3.1 transfected B35 cells treated with N-pentanoylmannosamine or N-propanoylmannosamine had slower activation and inactivation rates than those of untreated cells. Therefore, the N-acyl side chain of sialic acid is intimately connected with the activation and inactivation rates of this glycosylated potassium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号