共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of molecular biology》2022,434(13):167642
Perforin-like proteins (PLPs) play key roles in mechanisms associated with parasitic disease caused by the apicomplexan parasites Plasmodium and Toxoplasma. The T. gondii PLP1 (TgPLP1) mediates tachyzoite egress from cells, while the five Plasmodium PLPs carry out various roles in the life cycle of the parasite and with respect to the molecular basis of disease. Here we focus on Plasmodium vivax PLP1 and PLP2 (PvPLP1 and PvPLP2) compared to TgPLP1. Determination of the crystal structure of the membrane-binding APCβ domain of PvPLP1 reveals notable differences with TgPLP1, reflected in its inability to bind lipid bilayers as TgPLP1 and PvPLP2 do. Molecular dynamics simulations combined with site-directed mutagenesis and functional assays allow dissection of the binding interactions of TgPLP1 and PvPLP2 on lipid bilayers, and reveal similar tropisms for lipids enriched in the inner leaflet of the mammalian plasma membrane. In addition PvPLP2 displays a secondary synergistic interaction side-on from its principal bilayer interface. This study underlines the substantial differences between the biophysical properties of the APCβ domains of apicomplexan PLPs, which reflect their significant sequence diversity. Such differences will be important factors in determining the cell targeting and membrane-binding activity of the different proteins in parasitic life cycles and disease. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1578-1583
The near-infrared (NIR) spectra of such metals as Cu(II), Mn(II), Zn(II) and Fe(III) in HNO3 in the 700–1860 nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop chemometric models. The models yielded a coefficient of determination in cross validation of 0.9744 [Cu(II)], 0.9631 [Mn(II)], 0.9154 [Zn(II)] and 0.741 [Fe(III)]. The regression coefficients for Cu(II), Mn(II) and Zn(II), but not for Fe(III), showed strong negative peaks at around 1050–1200 nm, a zone where spectral bands have been reported to decrease with increasing pH value. A positive peak at around 710–750 nm, which may have been due to water absorption, was observed in regression coefficients of Cu(II), Mn(II) and Zn(II) but not in Fe(III), while a negative peak was observed in that for Fe(III) at around 710–750 nm. These results indicate that the divalent cations [Cu(II), Mn(II) and Zn(II)] showed different absorption in the NIR region from the trivalent cation [Fe(III)], suggesting that the vibration mode of water, which mirrors the interaction between cations and water, may be influenced by valency. 相似文献
3.
4.
5.
Molecular dynamics simulations were performed for four members of the aquaporin family (AQP1, AQPZ, AQP0, and GlpF) in the explicit membrane environment. The single-channel water permeability, pf, was evaluated to be GlpF approximately AQPZ > AQP1 > AQP0, while their relative pore sizes were GlpF > AQP1 > AQPZ > AQP0. This relation between pf and pore size indicates that water permeability was determined not only by the channel radius, but also another competing factor. Analysis of water dynamics revealed that this factor was the single-file nature of water transport. 相似文献
6.
7.
8.
《Critical reviews in biochemistry and molecular biology》2013,48(1-2):93-127
AbstractBasement membranes are thin layers of a specialized extracellular matrix that form the supporting structure on which epithelial and endothelial cells grow, and that surround muscle and fat cells and the Schwann cells of peripheral nerves. One common denominator is that they are always in close apposition to cells, and it has been well demonstrated that basement membranes do not only provide a mechanical support and divide tissues into compartments, but also influence cellular behavior. The major molecular constituents of basement membranes are collagen IV, laminin-entactin/nidogen complexes, and proteoglycans. Collagen IV provides a scaffold for the other structural macromolecules by forming a network via interactions between specialized N-and C-terminal domains. Laminin-entactin/nidogen complexes self-associate into less-ordered aggregates. These two molecular assemblies appear to be interconnected, presumably via binding sites on the entactin/nidogen molecule. In addition, proteoglycans are anchored into the membrane by an unknown mechanism, providing clusters of negatively charged groups. Specialization of different basement membranes is achieved through the presence of tissue-specific isoforms of laminin and collagen IV and of particular proteoglycan populations, by differences in assembly between different membranes, and by the presence of accessory proteins in some specialized basement membranes. Many cellular responses to basement membrane proteins are mediated by members of the integrin class of transmembrane receptors. On the intracellular side some of these signals are transmitted to the cytoskeleton, and result in an influence on cellular behavior with respect to adhesion, shape, migration, proliferation, and differentiation. Phosphorylation of integrins plays a role in modulating their activity, and they may therefore be a part of a more complex signaling system. 相似文献
9.
《Bioscience, biotechnology, and biochemistry》2013,77(3):608-612
The EpsF and EpsG of the methanol-assimilating bacterium Methylobacillus sp. 12S are involved in the synthesis of a high molecular weight exopolysaccharide, methanolan. These proteins share homology with chain-length determiners in other polysaccharide-producing bacteria. The N- and C-termini of EpsF were found to locate to the cytoplasm, and EpsF was predicted to have two transmembrane regions. EpsG showed both ATPase and autophosphorylation activities. 相似文献
10.
11.
Toru Ezure Kei Nanatani Yoko Sato Satomi Suzuki Keishi Aizawa Satoshi Souma Masaaki Ito Takahiro Hohsaka Gunnar von Heijine Toshihiko Utsumi Keietsu Abe Eiji Ando Nobuyuki Uozumi 《PloS one》2014,9(12)
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins. 相似文献
12.
《生物技术通报》2015,(9)
Cry1A类杀虫蛋白是目前应用最为广泛的杀虫蛋白,目前已经报道的Cry1A类杀虫蛋白之间存在普遍的结构域交换现象。针对鳞翅目害虫具有高活性的Cry1Ab与Cry1Ah蛋白开展研究,构建了Cry1Ab、Cry1Ah的杂合蛋白AhAhAb并测定了杀虫活性。结果显示,Cry1Ab、Cry1Ah的结构域交换引起蛋白杀虫活性的显著变化,与出发蛋白相比,杂合蛋白AhAhAb丧失了对棉铃虫杀虫活性,降低了对玉米螟、小菜蛾杀虫活性。利用生物信息学方法对Cry1Ah结构域I建模,并分析其与其他Cry1A蛋白结构及表面性质差异,分析表明Cry1Ah与Cry1Ab的结构域I有相同的碳骨架和二级结构,但是表面电势分布有较大差异。进一步分析杂合蛋白AhAhAb与Cry1Ab、Cry1Ah之间杀虫活性差异的原因对进一步揭示Cry1A类蛋白杀虫特异性进化规律有重要意义。 相似文献
13.
As a structural class, tight turns can control molecular recognition, enzymatic activity, and nucleation of folding. They have been extensively characterized in soluble proteins but have not been characterized in outer membrane proteins (OMPs), where they also support critical functions. We clustered the 4 to 6 residue tight turns of 110 OMPs to characterize the phi/psi angles, sequence, and hydrogen bonding of these structures. We find significant differences between reports of soluble protein tight turns and OMP tight turns. Since OMP strands are less twisted than soluble strands, they favor different turn structures types. Moreover, the membrane localization of OMPs yields different sequence hallmarks for their tight turns relative to soluble protein turns. We also characterize the differences in phi/psi angles, sequence, and hydrogen bonding between OMP extracellular loops and OMP periplasmic turns. As previously noted, the extracellular loops tend to be much longer than the periplasmic turns. We find that this difference in length is due to the broader distribution of lengths of the extracellular loops not a large difference in the median length. Extracellular loops also tend to have more charged residues as predicted by the charge-out rule. Finally, in all OMP tight turns, hydrogen bonding between the side chain and backbone 2 to 4 residues away from that side chain plays an important role. These bonds preferentially use an Asp, Asn, Ser, or Thr residue in a beta or pro phi/psi conformation. We anticipate that this study will be applicable to future design and structure prediction of OMPs. 相似文献
14.
Toshiki Ishikawa Toshihiko Aki Shuichi Yanagisawa Hirofumi Uchimiya Maki Kawai-Yamada 《Plant physiology》2015,169(2):1333-1343
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum (ER)-based cell death suppressor widely conserved in plants and animals (Xu and Reed, 1998; Kawai et al., 1999). In plants, BI-1 is considered a stress-associated factor, since its expression is stimulated by various stresses (Sanchez et al., 2000; Kawai-Yamada et al., 2001; Matsumura et al., 2003; Watanabe and Lam, 2006; Isbat et al., 2009). Although plants lack the homolog of animal BAX as an inducer of programmed cell death, loss of BI-1 expression results in a severe cell death phenotype under stress conditions, such as fumonisin B1-induced ER stress and disturbance of ion homeostasis (Watanabe and Lam, 2006; Ihara-Ohori et al., 2007). Conversely, plants overexpressing BI-1 exhibit tolerance to cell death induced by various stresses (Kawai-Yamada et al., 2001, 2004; Matsumura et al., 2003; Ihara-Ohori et al., 2007; Watanabe and Lam, 2008; Ishikawa et al., 2010). Moreover, BI-1 overexpression confers not only tolerance to oxidative stress-mediated cell death but also enhanced metabolic acclimation involved in energy and redox balance (Ishikawa et al., 2010). The results of these studies indicate that plant BI-1 is potentially useful for engineering stress-tolerant plants. However, little is known about the mode of action of BI-1 in the cell death regulatory pathway (Ishikawa et al., 2011). While overexpression systems sometimes include artificial or off-site effects, the observation that BI-1 overexpression improves stress tolerance suggests the importance of dissecting plants overexpressing it to further address the molecular basis of BI-1 function and cell death and stress tolerance management.As another approach to understand the molecular function of BI-1, screening of candidates interacting biochemically or functionally with BI-1 has been performed. First, Arabidopsis (Arabidopsis thaliana) BI-1 was confirmed to bind to calmodulin, like barley (Hordeum vulgare) MLO protein, a membrane-bound cell death regulator (Kim et al., 2002; Ihara-Ohori et al., 2007). Since the calmodulin-binding ability of BI-1 and MLO is necessary for their cell death-suppressing activity, Ca2+ signaling is critically involved in BI-1- and MLO-mediated cell death regulation (Kim et al., 2002; Kawai-Yamada et al., 2009). More recently, it was also demonstrated that the cell death suppression by BI-1 is mediated, at least in part, through fatty acid hydroxylase (FAH) in a Saccharomyces cerevisiae ectopic expression system (Nagano et al., 2009). In addition, Arabidopsis FAHs (AtFAH1 and AtFAH2) interact with BI-1 via cytochrome b5 at the ER, resulting in the accumulation of 2-hydroxy fatty acids (2-HFAs) in Arabidopsis plants overexpressing BI-1. 2-HFAs are typical components of the ceramide backbone of sphingolipids (Imai et al., 1995; Pata et al., 2010). Although many functions of plant sphingolipids remain to be elucidated, accumulating evidence clearly indicates that sphingolipids and their metabolism are closely involved in cell death regulation and various stress responses in plants (Ng et al., 2001; Liang et al., 2003; Townley et al., 2005; Chen et al., 2008, 2012; Wang et al., 2008; Saucedo-García et al., 2011; Dutilleul et al., 2012; Kӧnig et al., 2012; Nagano et al., 2012; Mortimer et al., 2013), implying that BI-1 plays a role in cell death regulation through sphingolipid metabolism. Sphingolipids are major components of membrane lipids and are at particularly high concentrations in membrane microdomains, known as lipid rafts in animal cells, which are essential for membrane-mediated signaling and act as a sorting platform for targeted protein traffic (Simons and Toomre, 2000; Staubach and Hanisch, 2011). In mammalian cells, sphingomyelin metabolism in lipid rafts plays a vital role in the initiation of apoptotic cell death (Milhas et al., 2010). Recent studies have demonstrated the presence of raft-like membrane microdomains in plant cells and a role for them in defense responses and targeted protein sorting (Peskan et al., 2000; Fujiwara et al., 2009; Minami et al., 2009; Melser et al., 2010; Markham et al., 2011).This study focused on membrane microdomains in relation to BI-1-mediated sphingolipid metabolism. Our findings indicated that BI-1 alters sphingolipid composition in membrane microdomains, and this is accompanied by dynamic changes in a number of detergent-resistant membrane (DRM) proteins involved in cell death regulation. 相似文献
15.
《Journal of receptor and signal transduction research》2013,33(1-3):29-56
AbstractA method of in vitro translation scanning was applied to a variety of polytopic integral membrane proteins, a transition metal P type ATPase from Helicobacter pylori, the SERCA 2 ATPase, the gastric H+,K+ ATPase, the CCK-A receptor and the human ileal bile acid transporter. This method used vectors containing the N terminal region of the gastric H+,K+ ATPase or the N terminal region of the CCK-A receptor, coupled via a linker region to the last 177 amino acids of the β-subunit of the gastric H+,K+ ATPase. The latter contains 5 potential N-linked glycosylation sites. Translation of vectors containing the cDNA encoding one, two or more putative transmembrane domains in the absence or presence of microsomes allowed determination of signal anchor or stop transfer properties of the putative transmembrane domains by the molecular weight shift on SDS PAGE. The P type ATPase from Helicobacter pylori showed the presence of 8 transmembrane segments with this method. The SERCA 2 Ca2+ ATPase with this method had 9 transmembrane co-translational insertion domains and coupled with other evidence these data resulted in a 11 transmembrane segment model. Translation of segments of the gastric H+,K+ ATPase provided evidence for only 7 transmembrane segments but coupled with other data established a 10 membrane segment model. The G7 protein, the CCK-A receptor showed the presence of 6 of the 7 transmembrane segments postulated for this protein. Translation of segments of the human ileal bile acid transporter showed the presence of 8 membrane insertion domains. However, translation of the intact protein provided evidence for an odd number of transmembrane segments, resulting in a tentative model containing 7 or 9 transmembrane segments. Neither G7 type protein appeared to have an arrangement of sequential topogenic signals consistent with the final assembled protein. This method provides a useful addition to methods of determining membrane domains of integral membrane proteins but must in general be utilized with other methods to establish the number of transmembrane α-helices. 相似文献
16.
17.
Adam D. Catherman Kenneth R. Durbin Dorothy R. Ahlf Bryan P. Early Ryan T. Fellers John C. Tran Paul M. Thomas Neil L. Kelleher 《Molecular & cellular proteomics : MCP》2013,12(12):3465-3473
Top-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work. In all, 347 mitochondrial proteins were identified, including ∼50% of the mitochondrial proteome below 30 kDa and over 75% of the subunits constituting the large complexes of oxidative phosphorylation. Three hundred of the identified proteins were found to be integral membrane proteins containing between 1 and 12 transmembrane helices, requiring no specific enrichment or modified LC-MS parameters. Over 5,000 proteoforms were observed, many harboring post-translational modifications, including over a dozen proteins containing lipid anchors (some previously unknown) and many others with phosphorylation and methylation modifications. Comparison between untreated and senescent H1299 cells revealed several changes to the proteome, including the hyperphosphorylation of HMGA2. This work illustrates the burgeoning ability of top-down proteomics to characterize large numbers of intact proteoforms in a high-throughput fashion.Although traditional bottom-up approaches to mass-spectrometry-based proteomics are capable of identifying thousands of protein groups from a complex mixture, proteolytic digestion can result in the loss of information pertaining to post-translational modifications and sequence variants (1, 2). The recent implementation of top-down proteomics in a high-throughput format using either Fourier transform ion cyclotron resonance (3–5) or Orbitrap instruments (6, 7) has shown an increasing scale of applicability while preserving information on combinatorial modifications and highly related sequence variants. For example, the identification of over 500 bacterial proteins helped researchers find covalent switches on cysteines (7), and over 1,000 proteins were identified from human cells (3). Such advances have driven the detection of whole protein forms, now simply called proteoforms (8), with several laboratories now seeking to tie these to specific functions in cell and disease biology (9–11).The term “proteoform” denotes a specific primary structure of an intact protein molecule that arises from a specific gene and refers to a precise combination of genetic variation, splice variants, and post-translational modifications. Whereas special attention is required in order to accomplish gene- and variant-specific identifications via the bottom-up approach, top-down proteomics routinely links proteins to specific genes without the problem of protein inference. However, the fully automated characterization of whole proteoforms still represents a significant challenge in the field. Another major challenge is to extend the top-down approach to the study of whole integral membrane proteins, whose hydrophobicity can often limit their analysis via LC-MS (5, 12–16). Though integral membrane proteins are often difficult to solubilize, the long stretches of sequence information provided from fragmentation of their transmembrane domains in the gas phase can actually aid in their identification (5, 13).In parallel to the early days of bottom-up proteomics a decade ago (17–21), in this work we brought the latest methods for top-down proteomics into combination with subcellular fractionation and cellular treatments to expand coverage of the human proteome. We utilized multiple dimensions of separation and an Orbitrap Elite mass spectrometer to achieve large-scale interrogation of intact proteins derived from H1299 cells. For this focus issue on post-translational modifications, we report this summary of findings from the largest implementation of top-down proteomics to date, which resulted in the identification of 1,220 proteins and thousands more proteoforms. We also applied the platform to H1299 cells induced into senescence by treatment with the DNA-damaging agent camptothecin. 相似文献
18.
宁夏生态足迹影响因子的偏最小二乘回归分析 总被引:10,自引:0,他引:10
生态足迹分析方法是一种度量区域生态可持续程度的有效方法,偏最小二乘回归法(PLS)能有效解决多元回归分析中变量的多重相关性问题,具有容易操作,相关分析精度高等特点。以宁夏为研究区域,在计算了宁夏2001—2010年人均生态足迹的基础上,应用偏最小二乘回归分析法,对影响宁夏生态足迹的各因子的重要程度进行了分析。通过变量投影重要性分析、特异点分析和预测分析,证明所得偏最小二乘回归模型具有较好的精度。研究结果为:2001—2010年,宁夏人均生态足迹由1.818103793 hm2上升至2.894958909 hm2,生态赤字由1.28352051 hm2上升至2.42316627 hm2,生态承载力由0.53458328 hm2下降至0.47179264 hm2;全区GDP、城镇居民人均生活消费支出、第二产业产值和第一产业产值是影响宁夏生态足迹的显著因子。 相似文献
19.
Andrew C. Lowenthal Marla Hill Laura K. Sycuro Khalid Mehmood Nina R. Salama Karen M. Ottemann 《Journal of bacteriology》2009,191(23):7147-7156
Helicobacter pylori uses flagellum-mediated chemotaxis to promote infection. Bacterial flagella change rotational direction by changing the state of the flagellar motor via a subcomplex referred to as the switch. Intriguingly, the H. pylori genome encodes four switch complex proteins, FliM, FliN, FliY, and FliG, instead of the more typical three of Escherichia coli or Bacillus subtilis. Our goal was to examine whether and how all four switch proteins participate in flagellation. Previous work determined that FliG was required for flagellation, and we extend those findings to show that all four switch proteins are necessary for normal numbers of flagellated cells. Furthermore, while fliY and fliN are partially redundant with each other, both are needed for wild-type levels of flagellation. We also report the isolation of an H. pylori strain containing an R54C substitution in fliM, resulting in bacteria that swim constantly and do not change direction. Along with data demonstrating that CheY-phosphate interacts with FliM, these findings suggest that FliM functions in H. pylori much as it does in other organisms.Flagellar motility is important for gastric colonization by the ulcer-causing bacterium Helicobacter pylori and also for suborgan localization within the stomach (16-18, 33, 45). Flagellar motility is regulated by a set of signal transduction proteins, collectively referred to as the chemotaxis pathway, that control the migration of microbes in response to environmental cues. This pathway is well elucidated in organisms such as Escherichia coli, Salmonella enterica serovar Typhimurium (referred to hereinafter as S. Typhimurium), and Bacillus subtilis. Sequence analysis of the genomes of other flagellated bacteria, including H. pylori, has suggested that there is diversity in the set of chemotaxis proteins that a particular microbe contains. Here we analyze the diversity of H. pylori''s flagellar switch proteins, which control flagellar rotational direction.The molecular mechanisms underlying chemotactic signal transduction in E. coli and S. Typhimurium have been extensively studied (7, 50) The overall function of this pathway is to convert the perception of local environmental conditions into a swimming response that drives bacteria toward beneficial conditions and away from harmful ones. Such migration is accomplished by interspersing straight, or smooth, swimming with periods of random reorientations or tumbles. Smooth swimming occurs when the flagella rotate counterclockwise (CCW), while reorienting occurs when the flagella rotate clockwise (CW). The chemotaxis signal transduction system acts to appropriately alter flagellar rotation. The canonical chemotaxis pathway consists of a chemoreceptor bound to the coupling protein CheW, which is in turn bound to the histidine kinase CheA. If a beneficial/attractant ligand is not bound (or a repellant is bound) to the chemoreceptor, CheA autophosphorylates and passes a phosphate to the response regulator CheY. Phosphorylated CheY (CheY-P) interacts with a protein complex called the flagellar switch (discussed at more length below). This interaction causes a switch in the direction of flagellar rotation from CCW to CW, thus reorienting the cells, via an as-yet-unknown mechanism (reviewed in references 23 and 29).Bacterial flagella are complex, multiprotein organelles (reviewed in references 23, 25, and 29). Each flagellum is composed of several parts, including the filament, the hook, and the basal body (listed from outside the cell to inside the cytoplasm). The flagellar basal body spans from the outer membrane to the cytoplasm and is responsible for rotating the flagellum. This part of the flagellum is further made up of several subassemblies that are named for their locations. The innermost is called the switch or C ring, based on its location in the cytoplasm. The switch is comprised of three proteins in E. coli, FliM, FliN, and FliG (reviewed in references 23 and 29). Experimental evidence strongly suggests that these proteins, along with the stator proteins MotA and MotB, drive motor rotation, because one can obtain point mutations in these proteins that disrupt rotation but not flagellation. Null mutations, however, in fliM, fliN, or fliG also result in aflagellated cells, a phenotype that has been proposed to arise because these proteins are needed to complete the flagellar export apparatus (23).There is extensive structural information about each of the switch proteins and their arrangement in the flagellum (reviewed in references 23 and 29, with additional key references added below). There are 26 copies of FliG, 34 copies of FliM, and ∼136 copies of FliN, arranged in a circular structure at the base of each flagellum. FliM is positioned between FliG and FliN and interacts with both. FliM also binds CheY-P via sequences in the first 16 amino acids, and elsewhere (15), to play a key role in switching flagellar rotation direction. FliG, the switch protein closest to the cytoplasmic membrane, interacts with the stator protein MotA, the FliF membrane protein that forms the flagellar basal-body MS ring, and the membrane-bound respiratory protein fumarate reductase (11). FliG has the most direct role in creating flagellar rotation. FliN is the most cytoplasmic component of the switch, and its role is not fully understood. FliN may play a role in switching by possibly binding CheY-P directly (36) and an additional role in flagellar assembly, because it binds to the flagellar export protein FliH and localizes it, along with its interaction partners FliI and FliJ, to the flagellum (20, 28, 36). FliN contains significant sequence similarity to secretion proteins of type III secretion systems of Yersinia pestis and Shigella flexneri. The conserved domain comprises most of FliN and is called a SpoA or PFAM PF01052 domain. Other FliN homologs include YscL and Spa33 (25).The flagellar switch of another well-studied chemotactic microbe, B. subtilis, differs slightly in its protein makeup from that of E. coli. B. subtilis contains FliM and FliG, which function similarly to their E. coli counterparts, but instead of FliN it has a protein called FliY (6, 42). FliY of B. subtilis has two functional domains, one of which is homologous to E. coli FliN, while the other shares similarity with the B. subtilis chemotaxis protein CheC, which functions to dephosphorylate CheY-P. FliY is the most active known phosphatase of CheY-P in B. subtilis (40, 41).H. pylori contains homologs of many of the chemotaxis and flagellar genes found in other organisms (32, 48). Curiously, its genome encodes four predicted flagellar switch proteins, FliG, FliM, and both FliY and FliN, although FliY was not annotated in the original genome analysis. Previous work had determined that H. pylori strain SS1 lacking fliG was aflagellated (1), but the other switch proteins had not been analyzed. As noted above, FliN and FliY share a FliN domain and so could have functional redundancy. fliY and fliM appear to reside in an operon, suggesting that the two encoded proteins function together (see Fig. S1 in the supplemental material).Since having all four flagellar switch proteins in one microbe is unusual, we were curious as to whether all four serve “switch” functions. As noted above, fliM and fliG deletions typically result in an aflagellated phenotype in other organisms. Others had previously shown that fliG mutations have this phenotype in H. pylori (1), and we additionally show here that fliM null mutants are also almost completely aflagellate. In spite of a shared domain that might indicate functional redundancy, we show that fliN and fliY are each necessary for normal numbers of flagellated cells. Finally, we characterize a fliM point mutant that results in a lock-smooth swimming bias and demonstrate physical interaction between CheY-P and FliM, indicating that FliM responds to CheY signaling in H. pylori in a manner similar to that found in E. coli, S. Typhimurium, B. subtilis, and other studied organisms. 相似文献
20.
奶牛Y精子膜蛋白的提取与分析 总被引:1,自引:0,他引:1
本实验旨在对奶牛Y精子膜蛋白的提取与SDS-PAGE分析,是分离纯化奶牛Y精子特异膜蛋白基础与关键。本实验采用超声波破碎法将精子膜与精子分离,分离后的精子膜粗品采用蔗糖密度梯度离心法进行纯化。纯化的精子膜经膜蛋白提取液(去污剂)提取,透析浓缩。经SDS-PAGE银盐染色,结果表明该方法成功地提取到膜蛋白,得到膜蛋白电泳图谱。BIO-RAD分析得知Y精子膜蛋白种类至少有10种,分子量范围为7.94kD~166.65kD,其中尤以15kD的蛋白含量最多。奶牛Y精子膜蛋白的提取与鉴定为深入研究Y精子特异膜蛋白在受精过程中的作用,从而获得一种更经济、更安全、更有效的奶牛性别控制方法提供了实验依据。 相似文献