首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phase I study of fixed-dose 5-fluorouracil (FU) and leucovorin (LCV), with excalating doses of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib, was conducted in 16 patients with advanced colorectal adenocarcinoma. At doses typically used to treat arthritis patients (100-200 mg po BID), celecoxib did not increase toxicities expected from the chemotherapy alone. 5-FU and leucovorin did not affect COX-2 inhibition by celecoxib. Preliminary data suggest it is safe to combine celecoxib with standard chemotherapeutic agents, in treatment of patients with colorectal cancer.  相似文献   

2.

Background

We previously demonstrated that cyclooxygenase (COX)-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice.

Methodology/Principal Findings

We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560), a COX-2 inhibitor (celecoxib) or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU) and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL) fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-α and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control.

Conclusions/Significance

Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.  相似文献   

3.
According to Burkitt's hypothesis, dietary fibres may protect against the development of colorectal cancer. In rats, studies have shown that only butyrate-producing fibres are protective. In parallel, in humans, non-steroidal anti-inflammatory drugs, which target cyclooxygenases, have been shown to display a protective effect against colorectal cancer. Among them, COX-2-selective inhibitors which present less side effects than non-selective agents, are promising as chemopreventive agents. Our aim was to analyse the effect of an association between butyrate-producing fibres and the COX-2 inhibitor on the development of aberrant crypt foci (ACF) in rats. Fisher F344 rats were fed with (1) a standard low fibre control diet; (2) the standard diet supplemented with 1500 ppm celecoxib; (3) a diet supplemented with 6% fructo-oligosaccharide (FOS); and (4) a diet with both celecoxib and FOS. Three weeks later, the rats were injected twice with azoxymethane and the number of ACF was determined 15 weeks later. In the control group, 43.8 +/- 6.4 ACF were found. This number was not significantly modified by the addition of FOS or celecoxib alone to the diet. However, the association of FOS and celecoxib resulted in a 61% reduction in the number of ACF (P < 0.01). The number of aberrant crypt per foci was also reduced. Thus, although no significant effect of celecoxib or FOS alone was identified, the association of butyrate-producing fibre and celecoxib was effective in preventing the development of ACF. This preliminary study argues for a strong protective effect of such an association which deserves further studies.  相似文献   

4.
Colon cancer is second leading cause of cancer-related deaths in Western countries. Diet and smoking, which contain aromatic and heterocyclic amines, are major risk factors for colon cancer. Colorectal cancers have a natural history of long latency and therefore provide ample opportunities for effective chemoprevention. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is an experimental aromatic amine that causes cancer in rat colon and serves as an experimental model for arylamine and heterocyclic amine mutagens derived from diet and smoking. In this study, we investigated the effects of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor on DMABP-induced DNA adduct formation in rat liver and colon. Male F-344 rats (5-week old) were provided free access to modified AIN-76A rat chow containing 0 (control), 500, 1000, or 1500 ppm celecoxib. Two weeks later, the rats received a subcutaneous injection of 100mg/kg DMABP in peanut oil. Two days after DMABP treatment, the rats were killed and DMABP-derived adducts were analyzed in colon and liver DNA by butanol extraction-mediated (32)P-postlabeling. Two major DNA adducts, identified as dG-C8-DMABP and dG-N(2)-DMABP, were detected in liver and colon of rats treated with DMABP. These DNA adducts were diminished approximately 35-40% with 500 ppm and 65-70% with 1,000 ppm celecoxib. In the colon, no further decline in DNA adducts was observed at 1500 ppm. The same DMABP-DNA adducts also were detected in the liver and were also diminished by celecoxib treatment. The reduction in DMABP-DNA adduct levels in celecoxib-treated animals provides further support for celecoxib as a chemopreventive agent for colorectal cancer.  相似文献   

5.
Inhibitors against cyclooxygenase-2 (COX-2), an inducible enzyme that catalyzes prostaglandin synthesis, are widely used in clinical. However, the potential hepatic toxicity of COX-2 inhibitors remains incompletely investigated. We report in this study that a clinically available COX-2 inhibitor, celecoxib, exacerbates porcine serum (PS)-induced hepatic fibrosis and induces hepatocellular necrosis in an experimental liver fibrosis model. Histological results revealed that although celecoxib by itself did not cause notable hepatic damages, it markedly enhanced hepatic fibrosis that had been initiated by PS. While PS alone did not cause any necrotic change in liver cells, the addition of celecoxib resulted in hepatocellular necrosis in PS-treated animals. Notably, celecoxib enhanced reduction of plasma prostaglandin E2 (PGE2) levels induced by PS. Taken together, our results indicate that treatment with celecoxib may exacerbate liver fibrosis and cause hepatocellular necrosis. This may be associated with reduction in PGE2 as an inheritance consequence of inhibition of COX-2.  相似文献   

6.
Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p<0.01). A more pronounced decrease (23-27%, p<0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p<0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p<0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired.  相似文献   

7.
目的:观察不同剂量的塞来昔布对C57BL/6小鼠肺癌移植瘤生长、COX-2表达和微淋巴管密度影响,探讨塞来昔布对C57BL/6小鼠肺癌移植瘤淋巴管生成可能作用机制及量效关系。方法:将Lewis肺癌细胞株接种于C57BL/6小鼠左侧腹股沟皮下建立移植瘤模型,随机分为4组:对照组、塞来昔布低剂量、中剂量、高剂量组。观察荷瘤小鼠生存状态,瘤体积变化,种瘤42天后牺牲小鼠,western blot半定量检测COX-2表达及微淋巴管密度。结果:Western blot半定量显示:塞来昔布高、中剂量组COX-2的表达水平及免疫组织化学染色微淋巴管密度计数均明显减低,差异有统计学意义(P0.05),低剂量组略有减低但差异无统计学意义(P0.05)。抑制程度呈明显的剂量依赖性。结论:塞来昔布抑制Lewis肺癌移植瘤的生长及淋巴转移,可能与下调COX-2的表达,阻遏了淋巴管生成的信号通路,抑制微淋巴管生成有关,该抑制作用呈一定的剂量相关性。  相似文献   

8.
Cyclooxygenase-2 (COX-2) is frequently overexpressed and enhances colorectal cancer (CRC) tumorigenesis, including cancer stem cell (CSC) regulation. Accordingly, nonsteroidal anti-inflammatory drugs (NSAIDs), inhibiting COX-1/2 activity, are viewed as potential drugs for CRC treatment. Accumulated evidence indicates that celecoxib has the most potency for antitumor growth among NSAIDs and the underlying mechanism is only partly dependent on COX-2 inhibition. However, the potency of these NSAIDs on CSC inhibition is still not known. In this study, we found that among these NSAIDs, celecoxib has the most potency for CSC inhibition of CRC cells, largely correlating to inhibition of c-Met, not COX-2. Further analysis reveals that c-Met activity was required for basal CSC property. Silence of c-Met blocked whereas overexpression of c-Met enhanced the celecoxib-inhibited CSC property. Collectively, these results not only first elucidate the mechanism underlying celecoxib-inhibited CSC but also indicate c-Met as a critical factor for the CSC property of CRC cells.  相似文献   

9.
The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of proliferation as well as metastatic potential of cancer cells.  相似文献   

10.
11.
Ovarian cancer is the major cause of death in women gynecological malignancy and gemcitabine (GEM) is commonly used in related chemotherapy. However, more than 90% GEM is catalyzed into an inactive metabolite 2′-deoxy-2′,2′-difluorouridine by stromal and cellular cytidine deaminase (CDA). Dihydroartemisinin (DHA), which possesses an intramolecular endoperoxide bridge, could be activated by heme or ferrous iron to produce reactive oxygen species (ROS). The excess ROS generation will excite expression of heme oxygenase-1 and suppress CDA expression. Under low CDA expression, the inactivation of GEM is decreased in turn to exert excellent therapeutic efficiency. Herein, we first studied the ROS generation by DHA in vitro with A2780 cells by means of flow cytometry and confocal laser scanning microscopy. Furthermore, cytotoxicity assay in vitro showed that DHA + GEM had synergistic effect, with molar ratio of DHA and GEM at 10. Eventually, in A2780 ovarian cancer xenograft tumor model, DHA + GEM exhibited significant antitumor efficiency with lower blood toxicity than GEM alone. Noteworthy, the combination treatment group completely eliminated the tumors on day 14.  相似文献   

12.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

13.
A series of 20 novel 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines were designed, synthesized, and screened in vitro for anti-inflammatory activity. These compounds were designed for evaluation as dual inhibitors of cyclooxygenases (COX-1 and COX-2) and lipoxygenases (LOX-5, LOX-12, and LOX-15) that are responsible for inflammation and pain. All pyrazoline molecules prepared are optically active and compounds that are more potent in COX-2 inhibitory activity (5a and 5f) were resolved by chiral column and each enantiomer was tested for cyclooxygenase inhibitory activity. Molecular modeling and comparison of molecular models of 5a enantiomers with that of celecoxib model shows that 5a (enantiomer-1) and 5a (enantiomer-2) have more hydrogen bonding interactions in the catalytic domain of COX-2 enzyme than celecoxib. Compounds 5a, 5e, and 5f showed moderate to good LOX-5 and LOX-15 inhibitory activity and this is comparable to that of celecoxib and more potent than rofecoxib.  相似文献   

14.
Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.  相似文献   

15.
Accumulated evidence reveals that increased cyclooxygenase-2 (COX-2) is involved in the development of colorectal cancer. Our purpose was to quantitate COX-2 expression in colorectal cancers using tissue microarray analysis and look for an association with clinicopathological stage. Immunohistochemical analysis of COX-2 was performed in tissue microarray slides containing 90 specimens including 32 well-differentiated, 35 moderately differentiated, and 23 poorly differentiated colorectal adenocarcinomas. All colorectal adenocarcinomas showed significant immunohistochemical expression of COX-2 when compared to normal colon epithelia. However, there was no significant difference in immunostaining scores between poorly, moderately, and well-differentiated tumors (195 +/- 28, 214 +/- 26 and 200 +/- 24, respectively). The COX-2 immunostaining score correlated significantly with T stage (P < 0.05) but not with N or M stage. The positive expression rates of CK20 were 97% for well-differentiated, 94% for moderately differentiated, and 65% for poorly differentiated colorectal adenocarcinomas, suggesting that CK20 may not be an effective discriminator between poorly differentiated colorectal adenocarcinoma and metastatic adenocarcinoma.  相似文献   

16.
Atherosclerosis being considered as an inflammatory disorder, the present study was undertaken to investigate the effectiveness of anti-inflammatory drugs (ibuprofen, aspirin, and celecoxib) in hypercholesterolemia. Ibuprofen is a cyclooxygenase (COX-1 and COX-2) inhibitor known to reduce the production of prostaglandins that play prominent role in inflammation. Beside the anti-inflammatory effects that make ibuprofen interesting for the treatment of condition associated with hypercholesterolemic atherosclerosis. Various other properties of ibuprofen were investigated, ibuprofen showed better reduction in total cholesterol, triglycerides, very low density lipo-protein, low density lipo-protein and atherogenic index than aspirin and celecoxib in hypercholesterolemic animals. These properties of ibuprofen may be due to inhibition of acetyl-CoA carboxylase initiating the synthesis of fatty acids. Ibuprofen significantly elevated antioxidant (super oxide dismutase; catalase) levels and reduced lipid peroxidation. Ibuprofen inhibits COX enzymes and thereby inhibits generation of free radicals during prostaglandins synthesis, which may be responsible for reduction in lipid peroxidation, super oxide dismutase levels and for high catalase levels. Interestingly, ibuprofen decreased total leukocyte count, monocyte count, erythrocyte sedimentation rate and C-reactive protein levels. From the results of present study, it can be concluded that ibuprofen (non-selective COX inhibitor) showed promising antihyperlipidemic, antiatherosclerotic, antioxidant, antiinflammatory and non-ulcerogenic activity in atherosclerotic animals as compared to aspirin (preferential COX-1 inhibitor) and celecoxib (selective COX-2 inhibitors, suggesting the inducible role of COX in atherosclerosis.  相似文献   

17.
Aceylation of cyclooxygenase (COX)-2 by aspirin can trigger the formation of 15(R)-epilipoxin A4, or aspirin-triggered lipoxin (ATL). ATL exerts protective effects in the stomach. Selective COX-2 inhibitors block ATL synthesis and exacerbate aspirin-induced gastric damage. Nitric oxide-releasing aspirins, including NCX-4016, have antiplatelet effects similar to aspirin but do not cause gastric damage. In the present study, we examined whether or not NCX-4016 triggers ATL synthesis and/or upregulates gastric COX-2 expression and the effects of coadministration of NCX-4016 with a selective COX-2 inhibitor on gastric mucosal injury and inflammation. Rats were given aspirin or NCX-4016 orally and either vehicle or a selective COX-2 inhibitor (celecoxib) intraperitoneally. Gastric damage was blindly scored, and granulocyte infiltration into gastric tissue was monitored through measurement of myeloperoxidase activity. Gastric PG and ATL synthesis was measured as was COX-2 expression. Whereas celecoxib inhibited gastric ATL synthesis and increased the severity of aspirin-induced gastric damage and inflammation, coadministration of celecoxib and NCX-4016 did not result in damage or inflammation. NCX-4016 did not upregulate gastric COX-2 expression nor did it trigger ATL synthesis (in contrast to aspirin). Daily administration of aspirin for 5 days resulted in significantly less gastric damage than that seen with a single dose, as well as augmented ATL synthesis. Celecoxib reversed this effect. In contrast, repeated administration of NCX-4016 failed to cause gastric damage, whether given alone or with celecoxib. These studies support the notion that NCX-4016 may be an attractive alternative to aspirin for indications such as cardioprotection, including in individuals also taking selective COX-2 inhibitors.  相似文献   

18.
Réti A 《Magyar onkologia》2010,54(4):377-381
The elevated cyclooxygenase-2 (COX-2) expression has been shown to affect the carcinogenesis and tumor progression processes, including cell proliferation, motility and angiogenesis. COX-2 is overexpressed in approximately 80% of sporadic colorectal carcinomas and COX-2 enzyme is the best defined target of non-steroidal anti-inflammatory drugs (NSAIDs). In the chemotherapy of colorectal carcinomas 5-fluorouracil (5-FU) has been the most important of the basic drugs for more than 40 years. In order to improve the effectiveness of 5-FU therapy different biological modifiers i.e. inhibitors of its catabolism or activators of anabolism have been studied recently. The rate-limiting enzyme of 5-FU catabolism is dihydropyrimidine dehydrogenase (DPD) since more than 80% of the administered 5-FU is catabolized by DPD. Tumoral DPD has become of clinical interest because elevated intratumoral DPD can decrease the tumor response to 5-FU therapy. The main purpose of our experiments was to investigate the effect of COX inhibitors on the efficacy of 5-FU on high and low COX-2 expressing HCA-7 and HT-29 human colon adenocarcinoma cell lines, respectively, and also on xenografts derived from HT-29 cells. The cytotoxic and antitumor effects of 5-FU in the presence of low doses of indomethacin (non-selective COX-2 inhibitor) and that of NS-398 (highly selective COX-2 inhibitor) on HT-29 and HCA-7 cells and also on the HT-29 xenograft were investigated. In addition, our intention was to understand the mechanism(s) by which NSAIDs could enhance the cytotoxic effect of 5-FU. Our data indicated that the elevated COX-2 expression of HCA-7, the collagen-induced HT-29-C cells and of the HT-29 xenograft were associated with reduced 5-FU sensitivity. Based on the fact that at the same time DPD activity was also increased it might be conceivable that a possible explanation for the decrease of 5-FU sensitivity is the co-existence of high COX-2 and DPD activity. Indomethacin or NS-398 enhanced in a simultaneous and significant manner the sensitivity and cytotoxic effect of 5-FU on high COX-2 expressing cells and xenografts through the modulation of DPD - decrease of its mRNA expression and/or enzyme activity. Based on our results it could be presumable that 5-FU efficacy is limited by the COX-2 associated high DPD expression and activity in patients with colorectal cancer as well, therefore further clinical studies are warranted to decide if NSAIDs in the therapeutic protocol might improve the antitumor potency of 5-FU. Réti A. Application of non-steroidal anti-inflammatory drugs to enhance 5-fluorouracil efficacy in experimental systems.  相似文献   

19.
The use of celecoxib is associated with a significant decrease in breast cancer risk. However, the long-term use of high-dose celecoxib might be limited owing to cardiovascular side effects. In this study, we found that acetylbritannilactone (ABL), extract from a Chinese medicinal herb, could reduce celecoxib dose and potentiate the growth-inhibitory effect in breast cancer cells. ABL enhanced the apoptotic effect of celecoxib in COX-2-expressing cells, but had little effect in COX-2-negative cells. The apoptosis induced by the combination treatment disappeared when COX-2 was knocked down, whereas the lack of apoptotic effects in COX-2-negative cells was reversed after COX-2 transfection. However, the combination treatment induced a G0/G1 phase arrest independent of whether or not the cells expressed COX-2. The G0/G1 arrest was attributed to a decreased expression of cyclinD1, cyclinE, CDK2 and CDK6, especially the upregulation of p21. In addition, inhibition of Akt and p38 signaling pathways was required by the synergism, as the constitutively active Akt and p38 protected cells against apoptosis and cell cycle arrest induced by the combination treatment. In vivo, administration of celecoxib and ABL were more effective than the individual agents against xenograft tumor growth. Thus, our data suggested that the combinatorial approach of celecoxib and ABL might be helpful for breast cancer treatment.  相似文献   

20.
Sensitization of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by luteolin has been suggested by in vitro studies. However, no in vivo experiment has been reported to validate the potentiation effect of luteolin on TRAIL's anticancer activity. In this report, we first confirmed that luteolin potentiates TRAIL-induced cytotoxicity in A549 cells and HeLa cells in association with increased activation of apoptosis. Then we performed an in vivo experiment with a non-small cell lung cancer xenograft mouse model, which showed for the first time that the in vivo anticancer activity of TRAIL was greatly enhanced by luteolin. Compared with that in untreated control or treatment with TRAIL or luteolin alone, inhibition of tumor growth and apoptotic cell death in xenograft tumors were significantly increased in animals receiving combination treatment with TRAIL and luteolin. Data from this study thus provide strong in vivo evidence supporting that luteolin is a potential sensitizer for TRAIL in anticancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号