首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EGFR is over-expressed in several solid tumors including breast, prostate, pancreas, and lung cancers and is correlated to the metastasic potential of the tumor. Anti-EGFR receptor-binding peptidomimetics (AERP) were examined to assess the small molecule’s potential use as tumor-specific imaging agents. The aim of this work was to design and characterize the binding specificity of the radiolabeled peptidomimetics to EGFR over-expressing cell lysate and to A431 xenograft tumors. Our newly designed peptidomimetic, AERP, was conjugated to DTPA and labeled with 99mTc. The in vivo tumor accumulation of [99mTc] DTPA-AERP-2 was 1.6 ± 0.1 %ID/g and tumor to muscle ratio was 5.5. Our studies suggest that this novel peptidomimetic, AERP-2, warrants further development as an EGFR specific tumor-imaging agent.  相似文献   

2.
Liposomes, modified with monoclonal antibodies, are suitable carriers for targeted delivery of chemotherapeutic drugs into brain tumors. Here, we investigate the therapeutic efficacy of monoclonal anticancer antibody 2C5-modified long-circulating liposomes (LCL) loaded with doxorubicin (2C5-DoxLCL) for the treatment of U-87 MG human brain tumors in an intracranial model in nude mice. In vitro, 2C5-DoxLCL is significantly more effective in killing the U-87 MG tumor cells than Doxil (commercial doxorubicin-loaded PEGylated LCL) or DoxLCL modified with a non-specific IgG. 2C5-immunoliposomes also demonstrate a significantly higher accumulation in U-87 MG tumors compared to all controls in a subcutaneous model. The treatment of intracranial U-87 MG brain tumors in nude mice with 2C5-DoxLCL provides a significant therapeutic benefit over control formulations, substantially reducing the tumor size and almost doubling the survival time. Thus, monoclonal antibody 2C5-modified LCL can specifically target the anticancer drugs to brain tumors, leading to improved therapeutic treatment of brain tumor in an intracranial model, in vivo.  相似文献   

3.
Yang CT  Kim YS  Wang J  Wang L  Shi J  Li ZB  Chen X  Fan M  Li JJ  Liu S 《Bioconjugate chemistry》2008,19(10):2008-2022
Radiolabeled organic cations, such as triphenylphosphonium (TPP), represents a new class of radiotracers for imaging cancers and the transport function of multidrug resistance P-glycoproteins (particularly MDR1 Pgp) by single photon emission computed tomography (SPECT) or positron emission tomography (PET). This report presents the synthesis and biological evaluation of (64)Cu-labeled 2-(diphenylphosphoryl)ethyldiphenylphosphonium (TPEP) cations as novel PET radiotracers for tumor imaging. Biodistribution studies were performed using the athymic nude mice bearing subcutaneous U87MG human glioma xenografts to explore the impact of linkers, bifunctional chelators (BFCs), and chelates on biodistribution characteristics of the (64)Cu-labeled TPEP cations. Metabolism studies were carried out using normal athymic nude mice to determine the metabolic stability of four (64)Cu radiotracers. It was found that most (64)Cu radiotracers described in this study have significant advantages over (99m)Tc-Sestamibi for their high tumor/heart and tumor/muscle ratios. Both BFCs and linkers have significant impact on biological properties of (64)Cu-labeled TPEP cations. For example, (64)Cu(DO3A-xy-TPEP) has much lower liver uptake and better tumor/liver ratios than (64)Cu(DO3A-xy-TPP), suggesting that TPEP is a better mitochondrion-targeting molecule than TPP. Replacing DO3A with DO2A results in (64)Cu(DO2A-xy-TPEP) (+), which has a lower tumor uptake than (64)Cu(DO3A-xy-TPEP). Substitution of DO3A with NOTA-Bn leads to a significant decrease in tumor uptake for (64)Cu(NOTA-Bn-xy-TPEP). The use of DOTA-Bn to replace DO3A has little impact on the tumor uptake, but the tumor/liver ratio of (64)Cu(DOTA-Bn-xy-TPEP) (-) is not as good as that of (64)Cu(DO3A-xy-TPEP), probably due to the aromatic benzene ring in DOTA-Bn. Addition of an extra acetamido group in (64)Cu(DOTA-xy-TPEP) results in a lower liver uptake, but tumor/liver ratios of (64)Cu(DOTA-xy-TPEP) and (64)Cu(DO3A-xy-TPEP) are comparable due to a faster tumor washout of (64)Cu(DOTA-xy-TPEP). Substitution of xylene with the PEG 2 linker also leads to a significant reduction in both tumor and liver uptake. MicroPET imaging studies on (64)Cu(DO3A-xy-TPEP) in athymic nude mice bearing U87MG glioma xenografts showed that the tumor was clearly visualized as early as 1 h postinjection with very high T/B contrast. There was very little metabolite (<2%) detectable in the urine and feces samples for (64)Cu(DO3A-xy-TPEP), (64)Cu(DOTA-Bn-xy-TPEP)(-), and (64)Cu(NOTA-Bn-xy-TPEP). Considering both tumor uptake and T/B ratios (particularly tumor/heart, tumor/liver, and tumor/muscle), it was concluded that (64)Cu(DO3A-xy-TPEP) is a promising PET radiotracer for imaging the MDR-negative tumors.  相似文献   

4.
5.
《Translational oncology》2021,14(11):101205
Epidermal Growth Factor Receptor (EGFR) is overexpressed on a number of human cancers, and often is indicative of a poor outcome. Treatment of EGFR/HER2 overexpressing cancers includes monoclonal antibody therapy (cetuximab/trastuzumab) either alone or in conjunction with other standard cancer therapies. While monoclonal antibody therapy has been proven to be efficacious in the treatment of EGFR/HER2 overexpressing tumors, drawbacks include the lack of long-lasting immunity and acquired resistance to monoclonal therapy. An alternative approach is to induce a polyclonal anti-EGFR/HER2 tumor antigen response by vaccine therapy. In this phase I/II open-label study, we examined anti-tumor immunity in companion dogs with spontaneous EGFR expressing tumors. Canine cancers represent an outbred population in which the initiation, progression of disease, mutations and growth factors closely resemble that of human cancers. Dogs with EGFR expressing tumors were immunized with a short peptide of the EGFR extracellular domain with sequence homology to HER2. Serial serum analyses demonstrated high titers of EGFR/HER2 binding antibodies with biological activity similar to that of cetuximab and trastuzumab. Canine antibodies bound both canine and human EGFR on tumor cell lines and tumor tissue. CD8 T cells and IgG deposition were evident in tumors from immunized dogs. The antibodies inhibited EGFR intracellular signaling and inhibited tumor growth in vitro. Additionally, we illustrate objective responses in reducing tumors at metastatic sites in host animals. The data support the approach of amplifying anti-tumor immunity that may be relevant in combination with other immune modifying therapies such as checkpoint inhibitors.  相似文献   

6.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

7.
8.
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging, and therapy monitoring of cancer and other diseases. Nonradioactive glucose analogues enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A nonradioactive fluorescent deoxyglucose analogue may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analogue, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated D-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of the Cy5.5-D-glucosamine (Cy5.5-2DG) conjugate for NIR fluorescence imaging of tumors in a preclinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and D-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 and 4 degrees C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 degrees C incubation, while they exhibit marginal uptake at 4 degrees C. The tumor cell uptake of Cy5.5-2DG cannot be blocked by the 50 mM D-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization was clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min postinjection (pi), and the highest U87MG tumor/muscle ratios of 2.81 +/- 0.10 and 3.34 +/- 0.23 were achieved 24 h pi for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micropositron emission tomography imaging study shows that [18F]FDG preferentially localizes to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h postadministration of the probe. In conclusion, the NIR fluorescent glucose analogues, Cy5.5-2DG and Cy5.5-NHS, both demonstrate tumor-targeting abilities in cell culture and living mice. More studies are warranted to further explore their application for optical tumor imaging. To develop NIR glucose analogues with the ability to target GLUTs/hexokinase, it is highly important to select NIR dyes with a reasonable molecular size.  相似文献   

9.
A DTPA-folate conjugate was radiolabeled with (99m)Tc by stannous chloride reduction of [(99m)Tc]sodium pertechnetate in an aqueous solution of DTPA-folate. The radiochemical purity of the product consistently exceeded 97%, as assessed by thin-layer chromatography employing conditions analogous to those for radiochemical quality control of the radiopharmaceutical [(99m)Tc]DTPA. HPLC demonstrated that the radiolabeled product resulted from the intact DTPA-folate conjugate and not unconjugated DTPA. The ability of [(99m)Tc]DTPA-folate to target folate receptors in vivo was assessed in biodistribution studies with athymic mice bearing subcutaneous folate-receptor-positive human KB cell tumors. As an internal control, previously studied [(111)In]DTPA-folate was coinjected with the [(99m)Tc]DTPA-folate, along with varying amounts of DTPA-folate (0.38 mg/kg, 1.6 mg/kg, or 14 mg/kg). At each DTPA-folate dose, [(99m)Tc]DTPA-folate exhibited tumor uptake comparable to that of the coadministered [(111)In]DTPA-folate, with radiotracer levels declining at the higher DTPA-folate doses due to competitive receptor binding of the unlabeled conjugate. Tumor uptake of both tracers was also competitively blocked by preadministered folic acid dihydrate (2.9 mg/kg). Tumor-to-background tissue contrast obtained with [(99m)Tc]DTPA-folate was generally similar to that obtained with [(111)In]DTPA-folate. The (99m)Tc-labeled DTPA-folate conjugate may have utility as a targeted radiopharmaceutical for imaging neoplastic tissues known to overexpress the folate receptor.  相似文献   

10.
Amplification of the epidermal growth factor receptor (EGFR), frequently expressed as a constitutively active deletion mutant (EGFRvIII), occurs commonly in glioblastoma multiformes (GBM). However, blockade of EGFR is therapeutically disappointing for gliomas with PTEN deletion. To search for small molecules treating this aggressive cancer, we have established a cell-based screening and successfully identified acridine yellow G that preferentially blocks cell proliferation of the most malignant U87MG/EGFRvIII cells over the less malignant U87MG/PTEN cells. Oral administration of this compound markedly diminishes the brain tumor volumes in both subcutaneous and intracranial models. It directly inhibits EGFR and PKCs with IC(50) values of ~7.5 and 5 μM, respectively. It dually inhibits EGFR and PKCs, resulting in a blockade of mammalian target of rapamycin signaling and cell cycle arrest in the G(1) phase, which leads to activation of apoptosis in the tumors. Hence, combinatorial inhibition of EGFR and PKCs might provide proof of concept in developing therapeutic agents for treating malignant glioma and other human cancers.  相似文献   

11.
Novel methods are needed for the radiohalogenation of cell-internalizing proteins and peptides because rapid loss of label occurs after lysosomal processing when these molecules are labeled using conventional radioiodination methodologies. We have developed a radiolabeled prosthetic group that contains multiple negatively charged D-amino acids to facilitate trapping of the radioactivity in the cell after proteolysis of the labeled protein. N(epsilon)-(3-[(125)I]iodobenzoyl)-Lys(5)-N(alpha)-maleimido-Gly(1)-GEEEK ([(125)I]IB-Mal-D-GEEEK) was synthesized via iododestannylation in 90.3 +/- 3.9% radiochemical yields. This radioiodinated agent was conjugated to iminothiolane-treated L8A4, an anti-epidermal growth factor receptor variant III (EGFRvIII) specific monoclonal antibody (mAb) in 54.3 +/- 17.7% conjugation yields. In vitro assays with the EGFRvIII-expressing U87MGDeltaEGFR glioma cell line demonstrated that the internalized radioactivity for the [(125)I]IB-Mal-D-GEEEK-L8A4 conjugate increased from 14.1% at 1 h to 44.7% at 24 h and was about 15-fold higher than that of directly radioiodinated L8A4 at 24 h. A commensurately increased tumor uptake in vivo in athymic mice bearing subcutaneous U87MGDeltaEGFR xenografts (52.6 +/- 14.3% injected dose per gram versus 17.4 +/- 3.5% ID/g at 72 h) also was observed. These results suggest that [(125)I]IB-Mal-d-GEEEK is a promising reagent for the radioiodination of internalizing mAbs.  相似文献   

12.
13.
Jia B  Shi J  Yang Z  Xu B  Liu Z  Zhao H  Liu S  Wang F 《Bioconjugate chemistry》2006,17(4):1069-1076
This report describes the evaluation of biodistribution properties of three radiotracers, [(99m)Tc(SQ168)(EDDA)], [(99m)Tc(SQ168)(tricine)(PDA)], and [(99m)Tc(SQ168)(tricine)(TPPTS)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; EDDA = ethylenediamine-N,N'-diacetic acid; PDA = 2,5-pyridinedicarboxylic acid; TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate), and their potential to image the glioma integrin alpha(v)beta(3) expression in BALB/c nude mice bearing the U87MG human glioma xenografts. It was found that all three radiotracers were able to localize in glioma tumors with a relatively high tumor uptake and long tumor retention time by binding to the integrin alpha(v)beta(3) expressed on both tumor cells and endothelial cells of tumor neovasculature. It seems that the coligand has minimal effect on integrin alpha(v)beta(3) targeting capability of the (99m)Tc-labeled RGDfK dimer, but it has a significant impact on their biodistribution properties. For example, the complex [(99m)Tc(SQ168)(tricine)(TPPTS)] has the lowest liver uptake and the highest metabolic stability in normal BALB/c nude mice. Results from SPECT imaging studies show that the glioma tumors can be clearly visualized with all three radiotracers at 4 h postinjection. Among the three radiotracers evaluated in this study, [(99m)Tc(SQ168)(tricine)(TPPTS)] has the best imaging quality and is a promising candidate for more preclinical evaluations in the future.  相似文献   

14.
Jin J  Bae KH  Yang H  Lee SJ  Kim H  Kim Y  Joo KM  Seo SW  Park TG  Nam DH 《Bioconjugate chemistry》2011,22(12):2568-2572
RNA interference is a powerful strategy that inhibits gene expression through specific mRNA degradation. In vivo, however, the application of small interfering RNAs (siRNAs) is severely limited by their instability and their poor delivery into target cells and tissues. This is especially true with glioblastomas (GBMs), the most frequent and malignant form of brain tumor, that has limited treatment options due to the largely impenetrable blood-brain barrier. Here, cationic solid lipid nanoparticles (SLN), reconstituted from natural components of protein-free low-density lipoprotein, was conjugated to PEGylated c-Met siRNA. The c-Met siRNA-PEG/SLN complex efficiently down-regulated c-Met expression level, as well as decreased cell proliferation in U-87MG in vitro. In orthotopic U-87MG xenograft tumor model, intravenous administration of the complex significantly inhibited c-Met expression at the tumor tissue and suppressed tumor growth without showing any systemic toxicity in mice. Use of Cy5.5 conjugated SLN revealed enhanced accumulation of the siRNA-PEG/SLN complexes specifically in the brain tumor. Our data demonstrates the feasibility of using siRNA-PEG/SLN complexes as a potential carrier of therapeutic siRNAs for the systemic treatment of GBM in the clinic.  相似文献   

15.
The simultaneous presence of the EGFR and its ligand TGF-alpha in human tumor tissues suggests that autocrine TGF-alpha stimulation drives tumor growth. Here we show that autocrine TGF-alpha stimulation does cause increased tumor growth in vivo, an effect that was proven to be mediated via EGFR activation, and that this TGF-alpha/EGFR autocrine loop was accessible to an EGFR specific tyrosine kinase inhibitor. Clones of the EGFR expressing glioma cell line U-1242 MG were transfected with TGF-alpha cDNA using a tetracycline-inhibitory system for gene expression. TGF-alpha expression was inhibited by the presence of tetracycline, and subcutaneous tumors forming from cell lines injected into nude mice could be inhibited by feeding mice tetracycline. We confirmed that TGF-alpha mRNA and protein were present in these tumors and that, subsequently, the endogenous EGFR was activated. Tumor growth could be inhibited by an EGFR specific tyrosine kinase inhibitor of the type 4-(3-chloroanilino)-6,7-dimethoxy-quinazoline, administered daily by intraperitoneal injection, thereby interrupting the autocrine loop.  相似文献   

16.
The 528 murine monoclonal antibody (MAb) to the human epidermal growth factor receptor (EGFR) was sequentially cationized with hexamethylenediamine and conjugated with diethylenetriaminepentaacetic acid (DTPA) as a potential antibody radiopharmaceutical for imaging EGFR-expressing cancer. The cationized 528 MAb was characterized with isoelectric focusing and electrophoresis, and an immunoradiometric assay, which showed the affinity of the 528 MAb for the human EGFR was retained following cationization. The native or cationized 528 MAb, labeled with (111)In, was injected intravenously in scid mice bearing human U87 flank tumors, which express the EGFR, and tumor imaging was performed with both external detection in live animals and with whole body autoradiography. However, the tumor signal was not increased with the cationized MAb, relative to the native MAb, and this was due to a serum inhibition phenomenon that was confirmed by a pharmacokinetics analysis in control mice. In an attempt to block the serum inhibition, the cationized 528 MAb was pegylated with 2000 Da poly(ethylene glycol), and the cationized/pegylated MAb was conjugated with DTPA and labeled with (111)In. However, a pharmacokinetics analysis showed the pegylation did not reverse the serum inhibition of the cationic charge on the MAb. These studies describe methods for reformulating monoclonal antibodies to develop improved radiopharmaceuticals, but show that radiolabeling a cationized MAb with DTPA produces a serum neutralization of the initial cationization modification.  相似文献   

17.
18.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.  相似文献   

19.
Both the epidermal growth factor receptor (EGFR) and protein kinase C (PKC) play important roles in glioblastoma invasive growth; however, the interaction between the EGFR and PKC is not well characterized in glioblastomas. Treatment with EGF stimulated global phosphorylation of the EGFR at Tyr(845), Tyr(992), Tyr(1068), and Tyr(1045) in glioblastoma cell lines (U-1242 MG and U-87 MG). Interestingly, phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of the EGFR only at Tyr(1068) in the two glioblastoma cell lines. Phosphorylation of the EGFR at Tyr(1068) was not detected in normal human astrocytes treated with the phorbol ester. PMA-induced phosphorylation of the EGFR at Tyr(1068) was blocked by bisindolylmaleimide (BIM), a PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor. In contrast, Go 6976, an inhibitor of classical PKC isozymes, had no effect on PMA-induced EGFR phosphorylation. Furthermore, gene silencing with PKCdelta small interfering RNA (siRNA), siRNA against c-Src, and mutant c-Src(S12C/S48A) and treatment with a c-Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) abrogated PMA-induced EGFR phosphorylation at Tyr(1068). PMA induced serine/threonine phosphorylation of Src, which was blocked by both BIM and rottlerin. Inhibition of the EGFR with AG 1478 did not significantly alter PMA-induced EGFR Tyr(1068) phosphorylation, but completely blocked EGF-induced phosphorylation of the EGFR. The effects of PMA on MAPK phosphorylation and glioblastoma cell proliferation were reduced by BIM, rottlerin, the MEK inhibitor U0126, and PKCdelta and c-Src siRNAs. Taken together, our data demonstrate that PMA transactivates the EGFR and increases cell proliferation by activating the PKCdelta/c-Src pathway in glioblastomas.  相似文献   

20.
This report presents the synthesis and evaluation of (64)Cu(DO3A-xy-ACR) (DO3A-xy-ACR = 2,6-bis(dimethylamino)-10-(4-((4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)benzyl)acridin-10-ium) as a radiotracer for imaging tumors in athymic nude mice bearing U87MG glioma xenografts by PET (positron emission tomography). The biodistribution data suggested that (64)Cu(DO3A-xy-ACR) was excreted mainly through the renal system with >65% of injected radioactivity being recovered from urine samples at 1 h postinjection (p.i.). The tumor uptake of (64)Cu(DO3A-xy-ACR) was 1.07 ± 0.23, 1.58 ± 0.55, 2.71 ± 0.66, 3.47 ± 1.19, and 3.52 ± 1.72%ID/g at 0.5, 1, 2, 4, and 24 h p.i., respectively. (64)Cu(DO3A-xy-ACR) had very high liver uptake (31.90 ± 3.98, 24.95 ± 5.64, 15.20 ± 4.29, 14.09 ± 6.82, and 8.18 ± 1.27%ID/g at 0.5, 1, 2, 4, and 24 h p.i., respectively) with low tumor/liver ratios. MicroPET studies showed that the tumors were clearly visualized as early as 30 min p.i. in the glioma-bearing mouse administered with (64)Cu(DO3A-xy-ACR). The high liver radioactivity accumulation was also seen. (64)Cu(DO3A-xy-ACR) had a relatively high metabolic stability during excretion via both renal and hepatobiliary routes, but it was completely decomposed in the liver homogenate. We explored the localization mechanism of Cu(DO3A-xy-ACR) using both U87MG human glioma and the cultured primary U87MG glioma cells. The results from the cellular staining assays showed that (64)Cu(DO3A-xy-ACR) is able to localize in the mitochondria of living U87MG glioma cells due to the enhanced negative mitochondrial potential as compared to normal cells. Although (64)Cu(DO3A-xy-ACR) is not an ideal PET radiotracer for tumor imaging due to its high liver uptake, the results from this study strongly suggest that (64)Cu-labeled acridinium cations are indeed able to localize in the energized mitochondria of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号