首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins.  相似文献   

2.
3.
Insulin-like growth factor I stimulates mitogenesis in smooth muscle cells, and upregulates elastin synthesis in embryonic aortic tissue. Increased smooth muscle elastin synthesis may play an important role in vascular remodeling in chronic pulmonary hypertension. Therefore, we studied the effect of IGF-I on elastin and total protein synthesis by pulmonary arterial smooth muscle cells in vitro. Tropoelastin synthesis was measured by enzyme immunoassay, and total protein synthesis was measured by [3H]-leucine incorporation. In addition, the steady-state levels of tropoelastin mRNA were determined by slot blot hybridization. Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 1000 ng/ml of IGF. The increase in elastin synthesis was reflected by a stimulation of the steady-state levels of tropoelastin mRNA. We conclude that IGF-I has potent elastogenic effects on vascular smooth muscle cells, and speculate that it may contribute to vascular wall remodeling in chronic hypertension.  相似文献   

4.
A hallmark of vascular smooth muscle cells (VSMCs) is their dynamic ability to assemble and disassemble contractile proteins into sarcomeric units depending upon their phenotypic state. This phenotypic plasticity plays an important role during vascular development and in obstructive vascular disease. Previously, we showed that the Elastin gene product, tropoelastin, activates myofibrillar organization of VSMCs. Recently, others have suggested that elastin does not have a direct signaling role but rather binds to and alters the interactions of other matrix proteins with their cognate receptors or disrupts the binding of growth factors and cytokines. In contrast, we provide evidence that tropoelastin directly regulates contractile organization of VSMCs. First, we show that a discrete domain within tropoelastin, VGVAPG, induces myofibrillogenesis in a time- and dose-dependent fashion. We confirm specificity using a closely related control peptide that fails to stimulate actin stress fiber formation. Second, the activity of VGVAPG is not affected by the presence or absence of other serum or matrix components. Third, both the elastin hexapeptide and tropoelastin stimulate actin polymerization through a common pertussis toxin-sensitive G protein pathway that activates RhoA-GTPase and results in the conversion of G to F actin. Collectively, these data support a model whereby the elastin gene product, signaling through the VGVAPG domain, directly induces VSMC myofibrillogenesis.  相似文献   

5.
Polymeric elastin provides the physiologically essential properties of extensibility and elastic recoil to large arteries, heart valves, lungs, skin and other tissues. Although the detailed relationship between sequence, structure and mechanical properties of elastin remains a matter of investigation, data from both the full‐length monomer, tropoelastin, and smaller elastin‐like polypeptides have demonstrated that variations in protein sequence can affect both polymeric assembly and tensile mechanical properties. Here we model known splice variants of human tropoelastin (hTE), assessing effects on shape, polymeric assembly and mechanical properties. Additionally we investigate effects of known single nucleotide polymorphisms in hTE, some of which have been associated with later‐onset loss of structural integrity of elastic tissues and others predicted to affect material properties of elastin matrices on the basis of their location in evolutionarily conserved sites in amniote tropoelastins. Results of these studies show that such sequence variations can significantly alter both the assembly of tropoelastin monomers into a polymeric network and the tensile mechanical properties of that network. Such variations could provide a temporal‐ or tissue‐specific means to customize material properties of elastic tissues to different functional requirements. Conversely, aberrant splicing inappropriate for a tissue or developmental stage or polymorphisms affecting polymeric assembly could compromise the functionality and durability of elastic tissues. To our knowledge, this is the first example of a study that assesses the consequences of known polymorphisms and domain/splice variants in tropoelastin on assembly and detailed elastomeric properties of polymeric elastin.  相似文献   

6.
Vessels remodel to compensate for increases in blood flow/pressure. The chronic exposure of blood vessels to increased flow and circulatory redox-homocysteine may injure vascular endothelium and disrupt elastic laminae. In order to understand the role of extracellular matrix (ECM) degradation in vascular structure and function, we isolated human vascular smooth muscle cells (VSMC) from normal and injured coronary arteries. The apparently normal vessels were isolated from explanted human hearts. The vessels were injured by inserting a blade into the lumen of the vessel, which damages the inner elastic laminae in the vessel wall and polarizes the VSMC by producing a pseudopodial phenotypic shift in VSMC. This shift is characteristic of migratory, invasive, and contractile nature of VSMC. We measured extracellular matrix metalloproteinases (MMPs), tissue plasminogen activator (tPA), tissue inhibitor of metalloproteinase (TIMP), and collagen I expression in VSMC by specific substrate zymography and Northern blot analyses. The injured and elastin peptide, val-gly-val-ala-pro-gly, treated VSMC synthesized active MMPs and reduced expression of TIMP. The level of tPA and collagen type I was induced in the injured, invasive VSMC and in the val-gly-val-ala-pro-gly treated cells. To demonstrate the angiogenic role of elastin peptide to VSMC we performed in vitro organ culture with rings from normal coronary artery. After 3 days in culture the vascular rings in the collagen gel containing elastin peptide elaborated MMP activity and sprouted and grew. The results suggest that val-gly-val-ala-pro-gly peptide generated at the site of proteolysis during vascular injury may have angiogenic activity.  相似文献   

7.
Reendothelialization of the stent surface after percutaneous coronary intervention (PCI) is known to be an important determinant of clinical outcome. We compared the effects of biological stent coatings, fibronectin, fibrinogen and tropoelastin, on human umbilical vein endothelial cell (HUVEC) and vascular smooth muscle cell (VSMC) characteristics. Umbilical cord arterial segments were cultured on coated surfaces and VSMC outgrowth (indicating proliferation and migration) was measured after 12 days. mRNA was isolated from HUVEC and VSMC cultured on these coatings and gene expression was profiled by QPCR. Procoagulant properties of HUVEC were determined by an indirect chromogenic assay which detects tissue factor activity. The varying stent coatings influence VSMC outgrowth: 31.2 ± 4.0 mm(2) on fibronectin, 1.6 ± 0.3 mm(2) on tropoelastin and 8.1 ± 1.5 mm(2) on a mixture of fibronectin/fibrinogen/tropoelastin, although HUVEC migration remains unaffected. Culturing HUVEC on tropoelastin induces increased expression of VCAM-1 (13.1 ± 4.4 pg/ml), ICAM-1 (5.1 ± 1.3 pg/ml) and IL-8 (11.6 ± 3.1 pg/ml) compared to fibronectin (0.7 ± 0.2, 0.8 ± 0.2, 2.3 ± 0.5 pg/ml, respectively), although expression levels on fibronectin/fibrinogen/tropoelastin remain unaltered. No significant differences in VCAM-1, ICAM-1 and IL-8 mRNA expression are found in VSMC. Finally, HUVEC cultured on tropoelastin display a fivefold increased tissue factor activity (511.6 ± 26.7%), compared to cells cultured on fibronectin (100 ± 3.9%) or fibronectin/fibrinogen/tropoelastin (76.3 ± 25.0%). These results indicate that tropoelastin inhibits VSMC migration but leads to increased inflammatory and procoagulant markers on endothelial cells. Fibronectin/fibrinogen/tropoelastin inhibits VSMCs while compensating the inflammatory and procoagulant effects. These data suggest that coating a mixture of fibronectin/fibrinogen/tropoelastin on a stent may promote reendothelialization, while keeping unfavourable processes such as restenosis and procoagulant activity limited.  相似文献   

8.
We investigated whether vascular smooth muscle cells (VSMC)-derived from human produce angiotensin (Ang) II upon change from the contractile phenotype to the synthetic phenotype by incubation with fibronectin (FN). Expression of alpha-smooth muscle (SM) actin, apparent in the contractile phenotype, was decreased by FN. Expressions of matrix Gla and osteopontin, apparent in the synthetic phenotype, were increased by FN. Ang II measured by radioimmunoassay (RIA) was significantly increased in human VSMC by FN. Expression of mRNAs for Ang II-generating proteases cathepsin D, cathepsin G, ACE, and chymase was increased by FN. Expressions of cathepsin D and cathepsin G proteins were also increased by FN. Ang I-generating activity, which was inhibited by an aspartyl protease inhibitor pepstatin A, was readily detected in the conditioned medium from human VSMC. Antisense oligodeoxynucleotides (ODNs) that hybridize with cathepsin D and cathepsin G significantly inhibited FN-increased Ang II in conditioned medium and cell extracts. In VSMC conditioned medium, FN-induced elevation of Ang II was significantly inhibited by temocapril but not by chymostatin. Ang II type 1 receptor antagonist CV11974 completely, and antisense cathepsin D and cathepsin G ODNs partially inhibited the FN-stimulated growth of human VSMC. These results indicate that the change of homogeneous cultures of human VSMC from the contractile to the synthetic phenotype sequentially increases expression of proteases cathepsin D, cathepsin G, and ACE, production of Ang II and productions of growth factors, culminating in VSMC proliferation. These findings implicate a new mechanism for the pathogenesis of human vascular proliferative diseases.  相似文献   

9.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   

10.
We previously characterized VE-statin/egfl7, a protein that is exclusively secreted by endothelial cells and modulates smooth muscle cell migration. Here, we show that VE-statin/egfl7 is the first known natural negative regulator of vascular elastogenesis. Transgenic mice, expressing VE-statin/egfl7 under the control of keratin-14 promoter, showed an accumulation of VE-statin/egfl7 in arterial walls where its presence correlated with an impaired organization of elastic fibres. In vitro, fibroblasts cultured in the presence of VE-statin/egfl7 were unable to deposit elastic fibres due to a deficient conversion of soluble tropoelastin into insoluble mature elastin. VE-statin/egfl7 interacts with the catalytic domain of lysyl oxidase (LOX) enzymes and, in endothelial cells, endogenous VE-statin/egfl7 colocalizes with LoxL2 and inhibits elastic fibre deposition. In contrast, mature elastic fibres are abundantly deposited by endothelial cells that are prevented from producing endogenous VE-statin/egfl7. We propose a model where VE-statin/egfl7 produced by endothelial cells binds to the catalytic domains of enzymes of the LOX family in the vascular wall, thereby preventing the crosslink of tropoelastin molecules into mature elastin polymers and regulating vascular elastogenesis.  相似文献   

11.
This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P1, which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr. CG shows a strong preference for the charged amino acid Lys at P1 in tropoelastin, whereas Lys was not identified at P1 in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P2 and P4′. With respect to the liberation of potentially bioactive peptides from elastin, the study revealed that all three serine proteases have a similar ability to release bioactive sequences, with CG producing the highest number of these peptides. In bioactivity studies, potentially bioactive peptides that have not been investigated on their bioactivity to date, were tested. Three new bioactive GxxPG motifs were identified; GVYPG, GFGPG and GVLPG.  相似文献   

12.
Atherosclerosis is characterized by a thickening and loss of elasticity of the arterial wall. Loss of elasticity has been attributed to the degradation of the arterial elastin matrix. Cathepsins K and S are papain-like cysteine proteases with known elastolytic activities, and both enzymes have been identified in macrophages present in plaque areas of diseased blood vessels. Here we demonstrate that macrophages express a third elastolytic cysteine protease, cathepsin V, which exhibits the most potent elastase activity yet described among human proteases and that cathepsin V is present in atherosclerotic plaque specimens. Approximately 60% of the total elastolytic activity of macrophages can be attributed to cysteine proteases with cathepsins V, K, and S contributing equally. From this 60%, two-thirds occur extracellularly and one-third intracellularly with the latter credited to cathepsin V. Ubiquitously expressed glycosaminoglycans (GAGs) such as chondroitin sulfate specifically inhibit the elastolytic activities of cathepsins V and K via the formation of specific cathepsin-GAG complexes. In contrast, cathepsin S, which does not form complexes with chondroitin sulfate is not inhibited; thus suggesting a specific regulation of elastolytic activities of cathepsins by GAGs. Because the GAG content is reduced in atherosclerotic plaques, an increase of cathepsins V and K activities may accelerate the destruction of the elastin matrix in diseased arteries.  相似文献   

13.
Tropoelastin     
Tropoelastin is a 60-72 kDa alternatively spliced extracellular matrix protein and a key component of elastic fibres. It is found in all vertebrates except for cyclostomes. Secreted tropoelastin is tethered to the cell surface, where it aggregates into organised spheres for cross-linking and incorporation into growing elastic fibres. Tropoelastin is characterised by alternating hydrophobic and hydrophilic domains and is highly flexible. The conserved C-terminus is an area of the molecule of particular biological importance in that it is required for both incorporation into elastin and for cellular interactions. Mature cross-linked tropoelastin gives elastin, which confers resilience and elasticity on a diverse range of tissues. Elastin gene disruptions in disease states and knockout mice emphasise the importance of proper tropoelastin production and assembly, particularly in vascular tissue. Tropoelastin constructs hold promise as biomaterials as they mimic many of elastin's physical and biological properties with the capacity to replace damaged elastin-rich tissue.  相似文献   

14.
15.
R A Pierce  S B Deak  C A Stolle  C D Boyd 《Biochemistry》1990,29(41):9677-9683
A lambda gt11 library constructed from poly(A+) RNA isolated from aortic tissue of neonatal rats was screened for rat tropoelastin cDNAs. The first screen, utilizing a human tropoelastin cDNA clone, provided rat tropoelastin cDNAs spanning 2.3 kb of carboxy-terminal coding sequence and extended into the 3'-untranslated region. A subsequent screen using a 5' rat tropoelastin cDNA clone yielded clones extending into the amino-terminal signal sequence coding region. Sequence analysis of these clones has provided the complete derived amino acid sequence of rat tropoelastin and allowed alignment and comparison with published bovine cDNA sequence. While the overall structure of rat tropoelastin is similar to bovine sequence, numerous substitutions, deletions, and insertions demonstrated considerable heterogeneity between species. In particular, the pentapeptide repeat VPGVG, characteristic of all tropoelastins analyzed to date, is replaced in rat tropoelastin by a repeating pentapeptide, IPGVG. The hexapeptide repeat VGVAPG, the bovine elastin receptor binding peptide, is not encoded by rat tropoelastin cDNAs. Variations in coding sequence between rat tropoelastin cDNA clones were also found which may represent mRNA heterogeneity produced by alternative splicing of the rat tropoelastin pre-mRNA.  相似文献   

16.
When beta-aminopropionitrile (BAPN) is added to neonatal rat aortic smooth muscle cell cultures there is a decrease in insoluble elastin accumulation with a concomitant increase in tropoelastin and tropoelastin fragments in the culture medium. The experiments described here examine the biological significance of this fragmentation. BAPN, as well as purified tropoelastin fragments isolated from spent medium of cells grown in the presence of BAPN, were added to cultures. A decrease in elastin mRNA was observed in cultures grown in the presence of BAPN and also in those cultures to which the purified tropoelastin moieties were added. These studies indicate that the inhibition of lysyl oxidase by BAPN prevents elastin crosslinking which results in an increase in tropoelastin moieties, thus leading to a down regulation of the steady state levels of elastin mRNA.  相似文献   

17.
Many pathogenic bacteria specifically bind to components of the extracellular matrix. In this study, we report the specific association of Staphylococcus aureus with elastin, a major structural component of elastic tissue. Competition assays in which the binding of radiolabeled tropoelastin was inhibited by excess unlabeled elastin peptides, but not by other proteins, established the specificity of the interaction. Kinetic studies showed that tropoelastin binding to the bacteria was rapid and saturable. Scatchard analysis of the equilibrium binding data indicated the presence of a single class of high affinity binding sites (KD approximately 4-7 nM) with approximately 1000 sites per organism. Protease susceptibility suggested that the elastin binding moiety on S. aureus was a protein, which was confirmed by the isolation of a 25-kDa elastin-binding protein from S. aureus extracts through affinity chromatography. Using a truncated form of tropoelastin, the bacterial binding domain on elastin was mapped to a 30-kDa fragment at the amino end of the molecule. Although the precise amino acid sequence recognized by the staphylococcal elastin receptor has not been characterized, it is clearly different from the region of tropoelastin that specifies binding to mammalian elastin receptors.  相似文献   

18.
Cathepsin S has been demonstrated to play a crucial role in the remodeling of extracellular matrix proteins such as elastin and collagen, which in turn contribute to the structural integrity of the cardiovascular wall. Atherosclerotic lesions, aneurysm formation, plaque rupture, thrombosis, and calcification are some of the cardiovascular disorders related to cathepsin S. A highly selective inhibitor of human as well as animal cathepsin S, RO5444101, was recently reported to attenuate the progression of atherosclerotic lesions. Here, we attempted to gain insight into the molecular mechanism of action of RO5444101 on cathepsin S by performing molecular docking and molecular dynamics (MD) simulation studies. The results of our studies correlate well with relevant reported experimental data and potentially explain the selectivity of this inhibitor for cathepsin S rather than cathepsin L1/L, cathepsin L2/V, and cathepsin K, which share conserved catalytic sites and have sequence similarities of 49%, 50%, and 55%, respectively, with respect to cathepsin S. In contrast to those closely related cathepsins, 20 ns MD simulation data reveal that the overall interaction of cathepsin S with RO5444101 is more stable and involves more protein–molecule interactions than the interactions of the inhibitor with the other cathepsins. This study therefore considerably improves our understanding of the molecular mechanism responsible for cathepsin S inhibition and facilitates the identification of potential novel selective inhibitors of cathepsin S.  相似文献   

19.
Arterial wall elastic fibers, made of 90% elastin, are arranged into elastic lamellae which are responsible for the resilience and elastic properties of the large arteries (aorta and its proximal branches). Elastin is synthesized only in early life and adolescence mainly by the vascular smooth muscles cells (VSMC) through the cross-linking of its soluble precursor, tropoelastin. In normal aging, the elastic fibers become fragmented and the mechanical load is transferred to collagen fibers, which are 100–1000 times stiffer than elastic fibers. Minoxidil, an ATP-dependent K+ channel opener, has been shown to stimulate elastin expression in vitro, and in vivo in the aorta of male aged mice and young adult hypertensive rats. Here, we have studied the effect of a 3-month chronic oral treatment with minoxidil (120 mg/L in drinking water) on the abdominal aorta structure and function in adult (6-month-old) and aged (24-month-old) male and female mice. Our results show that minoxidil treatment preserves elastic lamellae integrity at both ages, which is accompanied by the formation of newly synthesized elastic fibers in aged mice. This leads to a generally decreased pulse pressure and a significant improvement of the arterial biomechanical properties in female mice, which present an increased distensibility and a decreased rigidity of the aorta. Our studies show that minoxidil treatment reversed some of the major adverse effects of arterial aging in mice and could be an interesting anti-arterial aging agent, also potentially usable for female-targeted therapies.  相似文献   

20.
A number of reports point to the presence of proteoglycans and/or glycosaminoglycans within elastic fibers in normal and in pathological conditions. We present data that heparan sulphate (HS)-containing proteoglycans are associated with normal elastic fibers in human dermis and that isolated HS chains interact in vitro with recombinant tropoelastin and with peptides encoded by distinct exons of the human tropoelastin gene (EDPs). By immunocytochemistry, HS chains were identified as associated with the amorphous elastin component in the human dermis and remained associated with the residual elastin in the partially degenerated fibers of old subjects. HS appeared particularly concentrated in the mineralization front of elastic fibers in the dermis of patients affected by pseudoxanthoma elasticum (PXE). In in vitro experiments, HS induced substantial changes in the coacervation temperature and in the aggregation properties of recombinant tropoelastin and of synthetic peptides (EDPs) corresponding to sequences encoded by exons 18, 20, 24 and 30 of the human tropoelastin gene. In particular, HS modified the coacervation temperature and favoured the aggregation into ordered structures of tropoelastin molecules and of EDPs 18, 20 and 24, but not of EDP30. These data strongly indicate that HS-elastin interactions may play a role in tissue elastin fibrogenesis as well as modulating elastin stability with time and in diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号