首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The evolution of vertebrate genomes can be investigated by analyzing their regional compositional patterns, namely the compositional distributions of large DNA fragments (in the 30–100-kb size range), of coding sequences, and of their different codon positions. This approach has shown the existence of two evolutionary modes. In the conservative mode, compositional patterns are maintained over long times (many million years), in spite of the accumulation of enormous numbers of base substitutions. In the transitional, or shifting, mode, compositional patterns change into new ones over much shorter times.The conservation of compositional patterns, which has been investigated in mammalian genomes, appears to be due in part to some measure of compositional conservation in the base substitution process, and in part to negative selection acting at regional (isochore) levels in the genome and eliminating deviations from a narrow range of values, presumably corresponding to optimal functional properties. On the other hand, shifts of compositional patterns, such as those that occurred between cold-blooded and warm-blooded vertebrates, appear to be due essentially to both negative and positive selection again operating at the isochore level, largely under the influence of changes in environmental conditions, and possibly taking advantage of mutational biases in the replication/repair enzymes and/or in the enzyme make-up of nucleotide precursor pools. Other events (like translocations and changes in chromosomal structure) also play a role in the transitional mode of genome evolution.The present findings (1) indicate that isochores, which correspond to the DNA segments of individual or contiguous chromatin domains, represent selection units in the vertebrate genome; and (2) shed new light on the selectionist-neutralist controversy.This work was presented at the EMBO Workshop on Evolution (Cambridge, UK, 4–6 July 1988) and at the 16th International Congress of Genetics (Toronto, Canada, 20–27 August 1988)  相似文献   

2.
The vertebrate genome: isochores and evolution   总被引:18,自引:6,他引:12  
  相似文献   

3.
We have hybridized a human DNA fraction corresponding to the GC-richest and gene-richest isochore family, H3, on compositional fractions of DNAs from 12 mammalian species and three avian species, representing eight and three orders, respectively. Under conditions in which repetitive sequences are competed out, the H3 isochore probe only or predominantly hybridized on the GC-richest fractions of main-band DNA from all the species investigated. These results indicate that single-copy sequences from the human H3 isochores share homology with sequences located in the compositionally corresponding compartments of the vertebrate genomes tested. These sequences are likely to be essentially formed by conserved coding sequences. The present results add to other lines of evidence indicating that isochore patterns are highly conserved in warm-blooded vertebrate genomes. Moreover, they refine recent reports (Sabeur et al., 1993; Kadi et al., 1993), and correct them in some details and also in demonstrating that the shrew genome does not exhibit the general mammalian pattern, but a special pattern.Correspondence to: G. Bernardi  相似文献   

4.
Bernardi G 《Gene》2000,241(1):3-17
The nuclear genomes of vertebrates are mosaics of isochores, very long stretches (>300kb) of DNA that are homogeneous in base composition and are compositionally correlated with the coding sequences that they embed. Isochores can be partitioned in a small number of families that cover a range of GC levels (GC is the molar ratio of guanine+cytosine in DNA), which is narrow in cold-blooded vertebrates, but broad in warm-blooded vertebrates. This difference is essentially due to the fact that the GC-richest 10-15% of the genomes of the ancestors of mammals and birds underwent two independent compositional transitions characterized by strong increases in GC levels. The similarity of isochore patterns across mammalian orders, on the one hand, and across avian orders, on the other, indicates that these higher GC levels were then maintained, at least since the appearance of ancestors of warm-blooded vertebrates. After a brief review of our current knowledge on the organization of the vertebrate genome, evidence will be presented here in favor of the idea that the generation and maintenance of the GC-richest isochores in the genomes of warm-blooded vertebrates were due to natural selection.  相似文献   

5.
Costantini M  Bernardi G 《Gene》2008,410(2):241-248
Many years ago compositional correlations were found to hold between coding and contiguous non-coding sequences. These correlations were essentially studied in whole genomes of mammals, which are characterized by strong compositional heterogeneities. Here we investigated whether these correlations also hold within the much more homogeneous isochore families. This point was checked not only in the case of mammals, but also in that of phylogenetically distant vertebrates, which are characterized by very different compositional patterns. Indeed, these are remarkably different in cold- and warm-blooded vertebrates. Fish genomes, for instance, are much more homogeneous than those of mammals and birds. The compositional correlations between coding sequences and the corresponding introns, or their 5′ and 3′ flanking regions, were studied in the isochore families of the fully sequenced genomes from four fishes (Brachydanio rerio, Oryzias latipes, Gasterosteus aculeatus and Tetraodon nigroviridis), human and chicken.  相似文献   

6.
Isochore patterns and gene distributions in fish genomes   总被引:2,自引:0,他引:2  
The compositional approach developed in our laboratory many years ago revealed a large-scale compositional heterogeneity in vertebrate genomes, in which GC-rich and GC-poor regions, the isochores, were found to be characterized by high and low gene densities, respectively. Here we mapped isochores on fish chromosomes and assessed gene densities in isochore families. Because of the availability of sequence data, we have concentrated our investigations on four species, zebrafish (Brachydanio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), and pufferfish (Tetraodon nigroviridis), which belong to four distant orders and cover almost the entire GC range of fish genomes. These investigations produced isochore maps that were drastically different not only from those of mammals (in that only two major isochore families were essentially present in each genome vs five in the human genome) but also from each other (in that different isochore families were represented in different genomes). Gene density distributions for these fish genomes were also obtained and shown to follow the expected increase with increasing isochore GC. Finally, we discovered a remarkable conservation of the average size of the isochores (which match replicon clusters in the case of human chromosomes) and of the average GC levels of isochore families in both fish and human genomes. Moreover, in each genome the GC-poorest isochore families comprised a group of "long isochores" (2-20 Mb in size), which were the lowest in GC and varied in size distribution and relative amount from one genome to the other.  相似文献   

7.
The compositional evolution of vertebrate genomes   总被引:7,自引:0,他引:7  
Bernardi G 《Gene》2000,259(1-2):31-43
The compositional evolution of vertebrate genomes is characterized: (i) by one predominant conservative mode, in which nucleotide changes occur, but the base composition of DNA sequences in general, and of coding sequences in particular, does not change; and (ii) by three different shifting or transitional modes, in which nucleotide changes are accompanied by changes in the base composition of sequences. Investigations on these evolutionary modes have shed new light on a central problem in molecular evolution, namely the role played by natural selection in modulating the mutational input.This review will present first the intragenomic shifts, the 'major shifts' and the 'minor shift', and then the 'whole-genome', or 'horizontal', shift. In each case, the shifts were preceded and followed by a conservative mode of evolution. This review expands on a previous one [Bernardi, Gene 241 (2000) 3-17], and summarizes the evidence that the changes of the compositional patterns of the genome and their maintenance are controlled by Darwinian natural selection.  相似文献   

8.
The genomes of barley and wheat, two of the world's most important crops, are very large and complex due to their high content of repetitive DNA. In order to obtain a whole-genome sequence sample, we performed two runs of 454 (GS20) sequencing on genomic DNA of barley cv. Morex, which yielded approximately 1% of a haploid genome equivalent. Almost 60% of the sequences comprised known transposable element (TE) families, and another 9% represented novel repetitive sequences. We also discovered high amounts of low-complexity DNA and non-genic low-copy DNA. We identified almost 2300 protein coding gene sequences and more than 660 putative conserved non-coding sequences. Comparison of the 454 reads with previously published genomic sequences suggested that TE families are distributed unequally along chromosomes. This was confirmed by in situ hybridizations of selected TEs. A comparison of these data for the barley genome with a large sample of publicly available wheat sequences showed that several TE families that are highly abundant in wheat are absent from the barley genome. This finding implies that the TE composition of their genomes differs dramatically, despite their very similar genome size and their close phylogenetic relationship.  相似文献   

9.
Sazanov  A. A.  Sazanova  A. L.  Kozyreva  A. A.  Smirnov  A. F.  Andreozzi  L.  Federico  C.  Motta  S.  Saccone  S.  Bernardi  G. 《Russian Journal of Genetics》2003,39(6):681-686
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA–DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

10.
We compared the exon/intron organization of vertebrate genes belonging to different isochore classes, as predicted by their GC content at third codon position. Two main features have emerged from the analysis of sequences published in GenBank: (1) genes coding for long proteins (i.e., 500 aa) are almost two times more frequent in GC-poor than in GC-rich isochores; (2) intervening sequences (=sum of introns) are on average three times longer in GC-poor than in GC-rich isochores. These patterns are observed among human, mouse, rat, cow, and even chicken genes and are therefore likely to be common to all warm-blooded vertebrates. Analysis of Xenopus sequences suggests that the same patterns exist in cold-blooded vertebrates. It could be argued that such results do not reflect the reality because sequence databases are not representative of entire genomes. However, analysis of biases in GenBank revealed that the observed discrepancies between GC-rich and GC-poor isochores are not artifactual, and are probably largely underestimated. We investigated the distribution of microsatellites and interspersed repeats in introns of human and mouse genes from different isochores. This analysis confirmed previous studies showing that Ll repeats are almost absent from GC-rich isochores. Microsatellites and SINES (Alu, B1, B2) are found at roughly equal frequencies in introns from all isochore classes. Globally, the presence of repeated sequences does not account for the increased intron length in GC-poor isochores. The relationships between gene structure and global genome organization and evolution are discussed.  相似文献   

11.
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue in the identification of functional sequence features. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We have analyzed the pattern of neutral substitutions in 14.3 Mb of primate noncoding regions. We show that the GC-content toward which sequences are evolving is strongly correlated (r(2) = 0.61, P 相似文献   

12.
13.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

14.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

15.
Vertebrate genomes are mosaics of megabase-size DNA segments with a fairly homogeneous base composition, called isochores. They are divided into five families characterized by different guanine-cytosine (GC) levels and linked to several functional and structural properties. The increased availability of fully sequenced genomes allows the investigation of isochores in several species, assessing their level of conservation across vertebrate genomes. In this work, we characterized the isochores in Bos taurus using the ARS-UCD1.2 genome version. The comparison of our results with the well-studied human isochores and those of other mammals revealed a large conservation in isochore families, in number, average GC levels and gene density. Exceptions to the established increase in gene density with the increase in isochores (GC%) were observed for the following gene biotypes: tRNA, small nuclear RNA, small nucleolar RNA and pseudogenes that have their maximum number in H2 and H1 isochores. Subsequently, we assessed the ontology of all gene biotypes looking for functional classes that are statistically over- or under-represented in each isochore. Receptor activity and sensory perception pathways were significantly over-represented in L1 and L2 (GC-poor) isochores. This was also validated for the horse genome. Our analysis of housekeeping genes confirmed a preferential localization in GC-rich isochores, as reported in other species. Finally, we assessed the SNP distribution of a bovine high-density SNP chip across the isochores, finding a higher density in the GC-rich families, reflecting a potential bias in the chip, widely used for genetic selection and biodiversity studies.  相似文献   

16.
Breton S  Burger G  Stewart DT  Blier PU 《Genetics》2006,172(2):1107-1119
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.  相似文献   

17.
Karpova  O. I.  Saccone  S.  Varriale  A.  Sizova  T. V.  Penkina  M. V.  Bogdanov  Yu. F. 《Molecular Biology》2004,38(4):561-567
Synaptonemal complex (SC) isolated from spermatocyte nuclei after their exhaustive hydrolysis by DNase II contains DNA sequences tightly associated with it (SCAR DNA). Here, the compositional properties of a cloned family of golden hamster SCAR DNA were studied. For this purpose, 27 SCAR DNA clones were hybridized with compositionally fractionated golden hamster genomic DNA. The sequences of the SCAR DNA family were mainly localized in the GC-poor isochore families L1 and L2, which accounted for 63% of hybridization signals. The remaining 37% of signals pertained to the GC-rich isochore families H1 and H2. Thus, SCAR DNA proved to be distributed throughout the genome, irrespective of differences in density and sequence type between isochore families. Moreover, the SCAR DNA sequences containing the regions of homology with LINE/SINE repeats were found in all the isochore families. The compositional localization of SCAR DNA is in agreement with the hypothesis that the SC and SCAR DNA participate in chromatin reorganization during meiosis prophase I, which should result in the attachment of chromatin loops to the lateral elements of SC throughout its length.  相似文献   

18.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

19.
The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

20.
Frenkel S  Kirzhner V  Korol A 《PloS one》2012,7(2):e32076
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号