首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Cholesterol plays a crucial role in cell membranes, and has been implicated in the assembly and maintenance of sphingolipid-rich rafts. We have examined the cholesterol-dependence of model rafts (sphingomyelin-rich domains) in supported lipid monolayers and bilayers using atomic force microscopy. Sphingomyelin-rich domains were observed in lipid monolayers in the absence and presence of cholesterol, except at high cholesterol concentrations, when separate domains were suppressed. The effect of manipulating cholesterol levels on the behavior of these sphingomyelin-rich domains in bilayers was observed in real time. Depletion of cholesterol resulted in dissolution of the model lipid rafts, whereas cholesterol addition resulted in an increased size of the sphingomyelin-rich domains and eventually the formation of a single raftlike lipid phase. Cholesterol colocalization with sphingomyelin-rich domains was confirmed using the sterol binding agent filipin.  相似文献   

2.
Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content.  相似文献   

3.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of β-amyloid (Aβ) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Aβ. As a model, we have examined the interaction of Aβ(1−42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Aβ to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Aβ and Aβ-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Aβ addition and is maintained for over 24 h. By contrast, Aβ is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Aβ on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Aβ activity in vivo.  相似文献   

4.
A hallmark of Alzheimer's disease (AD) is the rearrangement of the β-amyloid (Aβ) peptide to a non-native conformation that promotes the formation of toxic, nanoscale aggregates. Recent studies have pointed to the role of sample preparation in creating polymorphic fibrillar species. One of many potential pathways for Aβ toxicity may be modulation of lipid membrane function on cellular surfaces. There are several mutations clustered around the central hydrophobic core of Aβ near the α-secretase cleavage site (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These point mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy (CAA) to typical Alzheimer's disease pathology with plaques and tangles. We investigated how these point mutations alter Aβ aggregation in the presence of supported lipid membranes comprised of total brain lipid extract. Brain lipid extract bilayers were used as a physiologically relevant model of a neuronal cell surface. Intact lipid bilayers were exposed to predominantly monomeric preparations of Wild Type or different mutant forms of Aβ, and atomic force microscopy was used to monitor aggregate formation and morphology as well as bilayer integrity over a 12 hour period. The goal of this study was to determine how point mutations in Aβ, which alter peptide charge and hydrophobic character, influence interactions between Aβ and the lipid surface. While fibril morphology did not appear to be significantly altered when mutants were prepped similarly and incubated under free solution conditions, aggregation in the lipid membranes resulted in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also had a variable ability to disrupt bilayer integrity.  相似文献   

5.
We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.  相似文献   

6.
Lysenin is a self-assembling, pore-forming toxin which specifically recognizes sphingomyelin. Mutation of tryptophan 20 abolishes lysenin oligomerization and cytolytic activity. We studied the interaction of lysenin WT and W20A with sphingomyelin in membranes of various lipid compositions which, according to atomic force microscopy studies, generated either homo- or heterogeneous sphingomyelin distribution. Liposomes composed of SM/DOPC, SM/DOPC/cholesterol and SM/DPPC/cholesterol could bind the highest amounts of GST-lysenin WT, as shown by surface plasmon resonance analysis. These lipid compositions enhanced the release of carboxyfluorescein from liposomes induced by lysenin WT, pointing to the importance of heterogeneous sphingomyelin distribution for lysenin WT binding and oligomerization. Lysenin W20A bound more weakly to sphingomyelin-containing liposomes than did lysenin WT. The same amounts of lysenin W20A bound to sphingomyelin mixed with either DOPC or DPPC, indicating that the binding was not affected by sphingomyelin distribution in the membranes. The mutant lysenin had a limited ability to penetrate hydrophobic region of the membrane as indicated by measurements of surface pressure changes. When applied to detect sphingomyelin on the cell surface, lysenin W20A formed large conglomerates on the membrane, different from small and regular clusters of lysenin WT. Only lysenin WT recognized sphingomyelin pool affected by formation of raft-based signaling platforms. During fractionation of Triton X-100 cell lysates, SDS-resistant oligomers of lysenin WT associated with membrane fragments insoluble in Triton X-100 while monomers of lysenin W20A partitioned to Triton X-100-soluble membrane fractions. Altogether, the data suggest that oligomerization of lysenin WT is a prerequisite for its docking in raft-related domains.  相似文献   

7.
The morphology of monolayers prepared from ternary lipid mixtures that have coexisting fluid phases has been examined by atomic force microscopy for samples transferred to mica before and after exposure to air. Mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol with either egg sphingomyelin or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were studied at several surface pressures. Both lipid mixtures have a combination of small islands and large microdomains at low surface pressure (5-10 mN/m) for monolayers deposited in either air or nitrogen. By contrast, monolayers have small interconnected nanodomains when deposited under nitrogen at 30 mN/m but mixtures of large microdomains and small nanodomains when transferred after exposure to air. These results are consistent with an earlier report that concluded that the formation of large domains at high surface pressures (>30 mN/m) for monolayers exposed to air is caused by lipid oxidation. However, the higher spatial resolution available with atomic force microscopy indicates that exposure of the monolayers to air leads to an increase in the size of preexisting nanodomains, rather than a change in the miscibility pressure. Examination of changes in surface morphology as a function of surface pressure demonstrate a gradual evolution in size and surface coverage for both nano- and microdomains, before formation of a network of interconnected nanodomains. Similar studies for binary mixtures in the absence of cholesterol indicate that lipid oxidation results in analogous changes in domain size for monolayers with coexisting gel and fluid phases. These results illustrate the importance of using techniques capable of probing the nanoscale organization of membranes.  相似文献   

8.
The effects of ceramide incorporation in supported bilayers prepared from ternary lipid mixtures which have small nanoscale domains have been examined using atomic force and fluorescence microscopy. Both direct ceramide incorporation in vesicles used to prepare the supported bilayers and enzymatic hydrolysis of SM by sphingomyelinase were compared for membranes prepared from 5:5:1 DOPC/sphingomyelin/cholesterol mixtures. Both methods of ceramide incorporation resulted in enlargement of the initial small ordered domains. However, enzymatic ceramide generation led to a much more pronounced restructuring of the bilayer to give large clusters of domains with adjacent areas of a lower phase. The individual domains were heterogeneous with two distinct heights, the highest of which is assigned to a ceramide-rich phase which is hypothesized to occur via ceramide flip-flop to the lower leaflet with formation of a raised domain due to negative membrane curvature. A combination of AFM and fluorescence showed that the bilayer restructuring starts rapidly after enzyme addition, with formation of large clusters of domains at sites of high enzyme activity. The clustering of domains is accompanied by redistribution of fluid phase to the periphery of the domain clusters and there is a continued slow evolution of the bilayer over a period of an hour or more after the enzyme is removed. The relevance of the observed clustering of small nanoscale domains to the postulated coalescence of raft domains to form large signaling platforms is discussed.  相似文献   

9.
The effects of ceramide incorporation in supported bilayers prepared from ternary lipid mixtures which have small nanoscale domains have been examined using atomic force and fluorescence microscopy. Both direct ceramide incorporation in vesicles used to prepare the supported bilayers and enzymatic hydrolysis of SM by sphingomyelinase were compared for membranes prepared from 5:5:1 DOPC/sphingomyelin/cholesterol mixtures. Both methods of ceramide incorporation resulted in enlargement of the initial small ordered domains. However, enzymatic ceramide generation led to a much more pronounced restructuring of the bilayer to give large clusters of domains with adjacent areas of a lower phase. The individual domains were heterogeneous with two distinct heights, the highest of which is assigned to a ceramide-rich phase which is hypothesized to occur via ceramide flip-flop to the lower leaflet with formation of a raised domain due to negative membrane curvature. A combination of AFM and fluorescence showed that the bilayer restructuring starts rapidly after enzyme addition, with formation of large clusters of domains at sites of high enzyme activity. The clustering of domains is accompanied by redistribution of fluid phase to the periphery of the domain clusters and there is a continued slow evolution of the bilayer over a period of an hour or more after the enzyme is removed. The relevance of the observed clustering of small nanoscale domains to the postulated coalescence of raft domains to form large signaling platforms is discussed.  相似文献   

10.
Oxidized cholesterol has been widely reported to contribute to the pathogenesis of Alzheimer's disease (AD). However, the mechanism by which they affect the disease is not fully understood. Herein, we aimed to investigate the effect of 7-ketocholesterol (7keto) on membrane-mediated aggregation of amyloid beta (Aβ-42), one of the critical pathogenic events in AD. We have shown that when cholesterol is present in lipid vesicles, kinetics of Aβ nuclei formation is moderately hindered while that of fibril growth was considerably accelerated. The partial substitution of cholesterol with 7keto slightly enhanced the formation of Aβ-42 nuclei and remarkably decreased fibril elongation, thus maintaining the peptide in protofibrillar aggregates, which are reportedly the most toxic species. These findings add in understanding of how cholesterol and its oxidation can affect Aβ-induced cytotoxicity.  相似文献   

11.
Use of cyclodextrin for AFM monitoring of model raft formation   总被引:5,自引:0,他引:5       下载免费PDF全文
The lipid rafts membrane microdomains, enriched in sphingolipids and cholesterol, are implicated in numerous functions of biological membranes. Using atomic force microscopy, we have examined the effects of cholesterol-loaded methyl-beta-cyclodextrin (MbetaCD-Chl) addition to liquid disordered (l(d))-gel phase separated dioleoylphosphatidylcholine (DOPC)/sphingomyelin (SM) and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/SM supported bilayers. We observed that incubation with MbetaCD-Chl led to the disappearance of domains with the formation of a homogeneously flat bilayer, most likely in the liquid-ordered (l(o)) state. However, intermediate stages differed with the passage through the coexistence of l(o)-l(d) phases for DOPC/SM samples and of l(o)-gel phases for POPC/SM bilayers. Thus, gel phase SM domains surrounded by a l(o) matrix rich in cholesterol and POPC could be observed just before reaching the uniform l(o) state. This suggests that raft formation in biological membranes could occur not only via liquid-liquid but also via gel-liquid immiscibility. The data also demonstrate that MbetaCD-Chl as well as the unloaded cyclodextrin MbetaCD make holes and preferentially extract SM in supported bilayers. This strongly suggests that interpretation of MbetaCD and MbetaCD-Chl effects on cell membranes only in terms of cholesterol movements have to be treated with caution.  相似文献   

12.
Biomembranes are not homogeneous, they present a lateral segregation of lipids and proteins which leads to the formation of detergent-resistant domains, also called “rafts”. These rafts are particularly enriched in sphingolipids and cholesterol. Despite the huge body of literature on raft insolubility in non-ionic detergents, the mechanisms governing their resistance at the nanometer scale still remain poorly documented. Herein, we report a real-time atomic force microscopy (AFM) study of model lipid bilayers exposed to Triton X-100 (TX-100) at different concentrations. Different kinds of supported bilayers were prepared with dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM) and cholesterol (Chol). The DOPC/SM 1:1 (mol/mol) membrane served as the non-resistant control, and DOPC/SM/Chol 2:1:1 (mol/mol/mol) corresponded to the raft-mimicking composition. For all the lipid compositions tested, AFM imaging revealed that TX-100 immediately solubilized the DOPC fluid phase leaving resistant patches of membrane. For the DOPC/SM bilayers, the remaining SM-enriched patches were slowly perforated leaving crumbled features reminiscent of the initial domains. For the raft model mixture, no holes appeared in the remaining SM/Chol patches and some erosion occurred. This work provides new, nanoscale information on the biomembranes' resistance to the TX-100-mediated solubilization, and especially about the influence of Chol.  相似文献   

13.
Biomembranes are not homogeneous, they present a lateral segregation of lipids and proteins which leads to the formation of detergent-resistant domains, also called "rafts". These rafts are particularly enriched in sphingolipids and cholesterol. Despite the huge body of literature on raft insolubility in non-ionic detergents, the mechanisms governing their resistance at the nanometer scale still remain poorly documented. Herein, we report a real-time atomic force microscopy (AFM) study of model lipid bilayers exposed to Triton X-100 (TX-100) at different concentrations. Different kinds of supported bilayers were prepared with dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM) and cholesterol (Chol). The DOPC/SM 1:1 (mol/mol) membrane served as the non-resistant control, and DOPC/SM/Chol 2:1:1 (mol/mol/mol) corresponded to the raft-mimicking composition. For all the lipid compositions tested, AFM imaging revealed that TX-100 immediately solubilized the DOPC fluid phase leaving resistant patches of membrane. For the DOPC/SM bilayers, the remaining SM-enriched patches were slowly perforated leaving crumbled features reminiscent of the initial domains. For the raft model mixture, no holes appeared in the remaining SM/Chol patches and some erosion occurred. This work provides new, nanoscale information on the biomembranes' resistance to the TX-100-mediated solubilization, and especially about the influence of Chol.  相似文献   

14.
Aggregation and fibril formation of β-amyloid peptides (Aβ) is the key event in the pathogenesis of Alzheimer's disease. Many efforts have been made on the development of effective inhibitors to prevent Aβ fibril formation or disassemble the preformed Aβ fibrils. Peptide inhibitors with sequences homologous to the hydrophobic segments of Aβ can alter the aggregation pathway of Aβ, together with decrease of the cell toxicity. In this study, the conjugate of ferrocenoyl (Fc) with pentapeptide KLVFF (Fc-KLVFF), was synthesized by HBTU/HOBt protocol in solution. The inhibitory effect of Fc-KLVFF on Aβ(1-42) fibril formation was evaluated by thioflavin T fluorescence assay, and confirmed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses. Fc-KLVFF shows high inhibitory effect towards the fibril formation of Aβ(1-42). Additionally, the attachment of ferrocenoyl moiety onto peptides allows us to investigate the interaction between the inhibitor and Aβ(1-42) in real-time by electrochemical method. As expected, tethering of ferrocenoyl moiety onto pentapeptide shows improved lipophilicity and significant resistance towards proteolytic degradation compared to its parent peptide.  相似文献   

15.
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.  相似文献   

16.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   

17.
The distribution of ganglioside in supported lipid bilayers has been studied by atomic force microscopy. Hybrid dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylethanolamine (DPPE) and (2:1 DPPC/cholesterol)/DPPE bilayers were prepared using the Langmuir Blodgett technique. Egg PC and DPPC bilayers were prepared by vesicle fusion. Addition of ganglioside GM1 to each of the lipid bilayers resulted in the formation of heterogeneous surfaces that had numerous small raised domains (30--200 nm in diameter). Incubation of these bilayers with cholera toxin B subunit resulted in the detection of small protein aggregates, indicating specific binding of the protein to the GM1-rich microdomains. Similar results were obtained for DPPC, DPPC/cholesterol, and egg PC, demonstrating that the overall bilayer morphology was not dependent on the method of bilayer preparation or the fluidity of the lipid mixture. However, bilayers produced by vesicle fusion provided evidence for asymmetrically distributed GM1 domains that probably reflect the presence of ganglioside in both inner and outer monolayers of the initial vesicle. The results are discussed in relation to recent inconsistencies in the estimation of sizes of lipid rafts in model and natural membranes. It is hypothesized that small ganglioside-rich microdomains may exist within larger ordered domains in both natural and model membranes.  相似文献   

18.
The aggregation (fibril formation) of amyloid β-protein (Aβ) is considered to be a crucial step in the etiology of Alzheimer's disease (AD). The inhibition of Aβ aggregation and/or decomposition of fibrils formed in aqueous solution by small compounds have been studied extensively for the prevention and treatment of AD. However, recent studies suggest that Aβ aggregation also occurs in lipid rafts mediated by a cluster of monosialoganglioside GM1. This study examined the effects of representative compounds on Aβ aggregation and fibril destabilization in the presence of GM1-containing raft-like liposomes. Among the compounds tested, nordihydroguaiaretic acid (NDGA), rifampicin (RIF), tannic acid (TA), and quercetin (QUE) showed strong fibrillization inhibitory activity. NDGA and RIF inhibited the binding of Aβ to GM1 liposomes by competitively binding to the membranes and/or direct interaction with Aβ in solution, thus at least partly preventing fibrils from forming. Coincubation of Aβ with NDGA, RIF, and QUE in the presence of GM1 liposomes resulted in elongate particles, whereas the presence of TA yielded protofibrillar structures. TA and RIF also destabilized fibrils. The most potent NDGA prevented Aβ-induced toxicity in PC12 cells by inhibiting Aβ accumulation. Furthermore, a comparison of the inhibitory effects of various compounds between aqueous-phase and GM1-mediated aggregation of Aβ suggested that the two aggregation processes are not identical.  相似文献   

19.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.  相似文献   

20.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号