首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.  相似文献   

2.
3.
The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts’, potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.  相似文献   

4.
Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.  相似文献   

5.
The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.  相似文献   

6.
McBride CS  Arguello JR  O'Meara BC 《Genetics》2007,177(3):1395-1416
The insect chemoreceptor superfamily comprises the olfactory receptor (Or) and gustatory receptor (Gr) multigene families. These families give insects the ability to smell and taste chemicals in the environment and are thus rich resources for linking molecular evolutionary and ecological processes. Although dramatic differences in family size among distant species and high divergence among paralogs have led to the belief that the two families evolve rapidly, a lack of evolutionary data over short time scales has frustrated efforts to identify the major forces shaping this evolution. Here, we investigate patterns of gene loss/gain, divergence, and polymorphism in the entire repertoire of approximately 130 chemoreceptor genes from five closely related species of Drosophila that share a common ancestor within the past 12 million years. We demonstrate that the overall evolution of the Or and Gr families is nonneutral. We also show that selection regimes differ both between the two families as wholes and within each family among groups of genes with varying functions, patterns of expression, and phylogenetic histories. Finally, we find that the independent evolution of host specialization in Drosophila sechellia and D. erecta is associated with a fivefold acceleration of gene loss and increased rates of amino acid evolution at receptors that remain intact. Gene loss appears to primarily affect Grs that respond to bitter compounds while elevated Ka/Ks is most pronounced in the subset of Ors that are expressed in larvae. Our results provide strong evidence that the observed phenomena result from the invasion of a novel ecological niche and present a unique synthesis of molecular evolutionary analyses with ecological data.  相似文献   

7.
The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.  相似文献   

8.
9.
The structure of contact chemoreceptors in the cibariopharyngeal pump of the moth Trichoplusia ni (Lepidoptera: Noctuidae) is described. Two types of receptors designated A and B are located on the floor of the pump. Two groups of 9-12 A receptors are located in the anterior part of the pump, and two groups of two B receptors are in the posterior part of the pump. Five sensory dendrites extend to the tip of each A receptor and four to each B receptors. Available evidence indicates that these receptors are contact chemoreceptors and do not serve as mechanoreceptors. The receptors are compared to those of other insects.  相似文献   

10.
In the honeybee (Apis mellifera) and carpenter ant (Camponotus floridanus) the antennal lobe output is connected to higher brain centers by a dual olfactory pathway. Two major sets of uniglomerular projection neurons innervate glomeruli from two antennal-lobe hemispheres and project via a medial and a lateral antennal-lobe protocerebral tract in opposite sequence to the mushroom bodies and lateral horn. Comparison across insects suggests that the lateral projection neuron tract represents a special feature of Hymenoptera. We hypothesize that this promotes advanced olfactory processing associated with chemical communication, orientation and social interactions. To test whether a dual olfactory pathway is restricted to social Hymenoptera, we labeled the antennal lobe output tracts in selected species using fluorescent tracing and confocal imaging. Our results show that a dual pathway from the antennal lobe to the mushroom bodies is present in social bees, basal and advanced ants, solitary wasps, and in one of two investigated species of sawflies. This indicates that a dual olfactory pathway is not restricted to social species and may have evolved in basal Hymenoptera. We suggest that associated advances in olfactory processing represent a preadaptation for life styles with high demands on olfactory discrimination like parasitoism, central place foraging, and sociality.  相似文献   

11.
《L' Année biologique》1999,38(2):73-89
The ant gardens of tropical America constitute one of the most unique forms of plant-insect associations. The ants that initiate these gardens belong to a limited number of species disparate from a phylogenetic point of view, but having the following two behavioural characteristics: (1) the capacity to build an arboreal nest rich in humus; and (2) an attraction towards the fruits and/or seeds of epiphytes that they retrieve to the nest and incorporate into its walls. The seeds then germinate, and produce a root system that reinforces the nest structure. The demographic growth of the ant colony is accompanied by an increase in the size of the nest which is the result of (1) the constant provisioning of diverse materials and seeds, and (2) the growth of the root system. Moreover, the volume of the ant garden increases as the host tree grows. An ant garden is an association which benefits both the ants and the epiphytes. In addition to the structural role played by their roots, the epiphytes often provide nourishment to the ants living in the ant gardens through fruits and extra-floral nectaries. In return, the ants disseminate the epiphyte seeds and protect the epiphytes from eventual defoliators. Different ant species can be found in the same garden. Such cohabitation can be the result of parabiosis, but, in the oldest gardens, certain ants are the secondary residents that partially or entirely excluded the ants that initiated the garden. An ant garden constitutes a relatively stable nesting site, something rather rare in this environment, such that different parts of the garden can be occupied by numerous Arthropods (including other social insects such as stingless-bees) on the condition that these insects can cohabit with the ants. As such, an ant garden can constitute a veritable microecosystem. While it is not possible to demonstrate a strict or obligate interspecific relationship between ant and plant species, only several rare species among the numerous neotropical epiphytes are involved and a certain number of preferences can be underlined. We present here in detail the characteristics of the ant gardens initiated in French Guiana by the parabiotic associations Crematogaster limata parabiotica/Camponotusfemoratus, and by the ants Pachycondyla goeldii and Odontomachus mayi.  相似文献   

12.
13.
Odorants and pheromones are essential to insects as chemical cues for finding food or an appropriate mating partner. These volatile compounds bind to olfactory receptors (Ors) expressed by olfactory sensory neurons. Each insect Or functions as a ligand-gated ion channel and is a heteromeric complex that comprises one type of canonical Or and a highly conserved Orco subunit. Because there are many Or types, insect Ors can recognize with high specificity a myriad of chemical cues. Cyclic nucleotides can modulate the activity of insect Or-Orco complexes; however, the mechanism of action of these nucleotides is under debate. Here, we show that cyclic nucleotides, including cAMP and cGMP, interact with the silkmoth sex pheromone receptor complex, BmOr-1-BmOrco, from the outside of the cell and that these nucleotides act as antagonists at low concentrations and weak agonists at high concentrations. These cyclic nucleotides do not compete with the sex pheromone, bombykol, for binding to the BmOr-1 subunit. ATP and GTP also weakly inhibited BmOr-1-BmOrco activity, but D-ribose had no effect; these findings indicated that the purine moiety was crucial for the inhibition. Only the bombykol receptors have been so far shown to be subject to modulation by nucleotide-related compounds, indicating that this responsiveness to these compounds is not common for all insect Or-Orco complexes.  相似文献   

14.
Gouws EJ  Gaston KJ  Chown SL 《PloS one》2011,6(3):e16606
Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n ≥ 100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa.  相似文献   

15.
Most tetrapod vertebrates have 2 olfactory systems, the main olfactory system (MOS) and the vomeronasal system (VNS). According to the dual olfactory hypothesis, the MOS detects environmental odorants, whereas the VNS recognizes intraspecific pheromonal cues. However, this strict functional distinction has been blurred by recent reports that both systems can perceive both types of signals. Studies of a limited number of receptors suggest that MOS receptors are broadly tuned generalists, whereas VNS receptors are narrowly tuned specialists. However, whether this distinction applies to all MOS and VNS receptors remains unknown. The differential tuning hypothesis predicts that generalist MOS receptors detect an overlapping set of ligands and thus are more likely to be conserved over evolutionary time than specialist VNS receptors, which would evolve in a more lineage-specific manner. Here we test this prediction for all olfactory chemoreceptors by examining the evolutionary patterns of MOS-expressed odorant receptors (ORs) and trace amine-associated receptors (TAARs) and VNS-expressed vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs) in 7 tetrapods (mouse, rat, dog, opossum, platypus, chicken, and frog). The phylogenies of V1Rs and V2Rs show abundant lineage-specific gene gains/losses and virtually no one-to-one orthologs between species. Opposite patterns are found for ORs and TAARs. Analysis of functional data and ligand-binding sites of ORs confirms that paralogous chemoreceptors are more likely than orthologs to have different ligands and that functional divergence between paralogous chemoreceptors is established relatively quickly following gene duplication. Together, these results strongly suggest that the functional profile of the VNS chemoreceptor repertoire evolves much faster than that of the MOS chemoreceptor repertoire and that the differential tuning hypothesis applies to the majority, if not all, of MOS and VNS receptors.  相似文献   

16.
Ants and other social insects forming large societies are generally characterized by marked reproductive division of labour. Queens largely monopolize reproduction whereas workers have little reproductive potential. In addition, some social insect species show tremendous lifespan differences between the queen and worker caste. Remarkably, queens and workers are usually genotypically identical, meaning that any phenotypic differences between the two castes arise from caste-specific gene expression. Using a combination of differential display, microarrays and reverse Northern blots, we found 16 genes that were differentially expressed between adult queens and workers in the ant Lasius niger, a species with highly pronounced reproductive division of labour and a several-fold lifespan difference between queens and workers. RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) and gene walking were used to further characterize these genes. On the basis of the molecular function of their nearest homologues, three genes appear to be involved in reproductive division of labour. Another three genes, which were exclusively overexpressed in queens, are possibly involved in the maintenance and repair of the soma, a candidate mechanism for lifespan determination. In-depth functional analyses of these genes are now needed to reveal their exact role.  相似文献   

17.
The gustatory receptor (Gr) protein family contains most of the diversity in the insect chemoreceptor superfamily, including within it not only taste receptors but select olfactory receptors as well. Manual annotation of the Gr family in the genome sequence of the yellow-fever mosquito, Aedes aegypti, yielded a total of 114 potential proteins encoded by 79 genes. In the sequenced genome, 23 of these genes and protein isoforms are pseudogenic, leaving 91 putatively functional Grs. Comparison with our previously published set of 76 Grs encoded by 52 genes in the distantly related Anopheles gambiae mosquito revealed 13 new AgGrs encoded by 8 genes. Phylogenetic analysis reveals the conservation of carbon dioxide, sugar, and several orphan receptors in these 2 mosquitoes and Drosophila flies. On the other hand, most of these Grs are unique to mosquitoes and many are specific to the Aedes or Anopheles lineages, indicating their involvement in mosquito-specific aspects of both gustatory and olfactory perception. In particular, most instances of alternative splicing in orthologous loci appear to have evolved after the culicine-anopheline split +/-150 million years ago.  相似文献   

18.
Abdel-Latief M 《PloS one》2007,2(12):e1319
Chemoperception in invertebrates is mediated by a family of G-protein-coupled receptors (GPCR). To date nothing is known about the molecular mechanisms of chemoperception in coleopteran species. Recently the genome of Tribolium castaneum was sequenced for use as a model species for the Coleoptera. Using blast searches analyses of the T. castaneum genome with previously predicted amino acid sequences of insect chemoreceptor genes, a putative chemoreceptor family consisting of 62 gustatory receptors (Grs) and 26 olfactory receptors (Ors) was identified. The receptors have seven transmembrane domains (7TMs) and all belong to the GPCR receptor family. The expression of the T. castaneum chemoreceptor genes was investigated using quantification real- time RT-PCR and in situ whole mount RT-PCR analysis in the antennae, mouth parts, and prolegs of the adults and larvae. All of the predicted TcasGrs were expressed in the labium, maxillae, and prolegs of the adults but TcasGr13, 19, 28, 47, 62, 98, and 61 were not expressed in the prolegs. The TcasOrs were localized only in the antennae and not in any of the beetles gustatory organs with one exception; the TcasOr16 (like DmelOr83b), which was localized in the antennae, labium, and prolegs of the beetles. A group of six TcasGrs that presents a lineage with the sugar receptors subfamily in Drosophila melanogaster were localized in the lacinia of the Tribolium larvae. TcasGr1, 3, and 39, presented an ortholog to CO(2) receptors in D. melanogaster and Anopheles gambiae was recorded. Low expression of almost all of the predicted chemoreceptor genes was observed in the head tissues that contain the brains and suboesophageal ganglion (SOG). These findings demonstrate the identification of a chemoreceptor family in Tribolium, which is evolutionarily related to other insect species.  相似文献   

19.
20.
Bacterial chemoreceptors sense environmental stimuli and govern cell movement by transmitting the information to the flagellar motors. The highly conserved cytoplasmic domain of chemoreceptors consists in an alpha‐helical hairpin that forms in the homodimer a coiled‐coil four‐helix bundle. Several classes of chemoreceptors that differ in the length of the coiled‐coil structure were characterized. Many bacterial species code for chemoreceptors that belong to different classes, but how these receptors are organized and function in the same cell remains an open question. E. coli cells normally code for single class chemoreceptors that form extended arrays based on trimers of dimers interconnected by the coupling protein CheW and the kinase CheA. This structure promotes effective coupling between the different receptors in the modulation of the kinase activity. In this work, we engineered functional derivatives of the Tsr chemoreceptor of E. coli that mimic receptors whose cytoplasmic domain is longer by two heptads. We found that these long Tsr receptors did not efficiently mix with the native receptors and appeared to function independently. Our results suggest that the assembly of membrane‐bound receptors of different specificities into mixed clusters is dictated by the length‐class to which the receptors belong, ensuring cooperative function only between receptors of the same class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号