首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.  相似文献   

2.
Two novel monoclonal antibodies were raised and used to study the expression of laminin (Ln) alpha1-chain in developing and adult human tissues. In both fetal and adult kidney, a distinct immunoreactivity was seen in basement membranes (BM) of most proximal tubules but not in the distal tubular or glomerular BM or in the basal laminae of blood vessels. Immunoprecipitation of metabolically labeled cultured human renal proximal tubular cells showed an abundant production and deposition of Ln alpha1-chain to the extracellular matrix, suggestive of an epithelial origin of kidney Ln-1. Quantitative cell adhesion experiments with JAR choriocarcinoma cells showed that purified human Ln-1 is a good substrate for cell adhesion that it is differently recognized by integrin receptors when compared to mouse Ln-1. In fetal and adult testes immunoreactivity was solely confined to BM of the seminiferous epithelium. In the airways BM-confined reaction was only seen in fetal budding bronchial tubules (16-19 weeks) at the pseudoglandular stage of development. In the skin a distinct immunoreactivity was confined to BM of developing hair buds but not in epithelial BMs of adult epidermis or of epidermal appendages. In other adult tissues, immunoreactivity was found in BMs of thyroid, salivary, and mammary glands as well as in BMs of endometrium and endocervix, but not of ectocervix or vagina. No immunoreactivity was found in BMs of most of the digestive tract, including the liver and pancreas, except for BMs of esophageal submucosal glands and duodenal Brunner's glands. In fetal specimens, BMs of the bottoms of the intestinal and gastric glands were positive. Basal laminae of blood vessels were generally negative for Ln alpha1 chain with the exception of specimens of both fetal and adult central nervous system in which immunoreactivity for Ln alpha1 chain was prominently confined to capillary walls. The results suggest that outside the central nervous system, Ln alpha1 chain shows a restricted and developmentally regulated expression in BMs of distinct epithelial tissues.  相似文献   

3.
Recently a novel laminin gamma3 chain was identified in mouse and human and shown to have the same modular structure as the laminin gamma1 chain. We expressed two fragments of the gamma3 chain in mammalian cells recombinantly. The first, domain VI/V, consisting of laminin N-terminal (domain VI) and four laminin-type epidermal growth factor-like (domain V) and laminin N-terminal modules, was shown to be essential for self-assembly of laminins. The other was domain III3-5, which consists of three laminin-type epidermal growth factor-like modules and is predicted to bind to nidogens. The gamma3 VI/V fragment was a poor inhibitor for laminin-1 polymerization as was the beta2 VI/V fragment. The gamma3 III3-5 fragment bound to nidogen-1 and nidogen-2 with lower affinity than the gamma1 III3-5 fragment. These data suggested that laminins containing the gamma3 chain may assemble networks independent of other laminins. Polyclonal antibodies raised against gamma3 VI/V and gamma3 III3-5 showed no cross-reaction with homologous fragments from the gamma1 and gamma2 chains of laminin and allowed the establishment of gamma chain-specific radioimmunoassays and light and electron microscopic immunostaining of tissues. This demonstrated a 20-100-fold lower content of the gamma3 chain compared with the gamma1 chain in various tissue extracts of adult mice. The expression of gamma3 chain was highly tissue-specific. In contrast to earlier assumptions, the antibodies against the gamma3 chain showed light microscopic staining exclusively in basement membrane zones of adult and embryonic tissues, such as the brain, kidney, skin, muscle, and testis. Ultrastructural immunogold staining localized the gamma3 chain to basement membranes of these tissues.  相似文献   

4.
In addition to being the specialized site for transmission of force from the muscle to the tendon, the myotendinous junction (MTJ) also plays an important role in muscle splitting during morphogenesis. An early event in the formation of the MTJ is a regional deposition of basement membranes. We used immunocytochemistry to investigate the distribution of laminin chains during the development of MTJs in human limb muscle at 8-22 weeks of gestation (wg) and in adult MTJs. We used polyclonal antibodies and a new monoclonal antibody (MAb) against the human laminin alpha1 G4/G5 domains. At 8-10 wg, laminin alpha1 and laminin alpha5 chains were specifically localized to the MTJ. Laminin alpha1 chain remained restricted to the MTJ at 22 wg as the laminin beta2 chain had appeared, whereas the laminin alpha5 chain became deposited along the entire length of the myotubes from 12 wg. In the adult MTJ, only vestigial amounts of laminin alpha1 and laminin alpha5 chains could be detected. On the basis of co-distribution data, we speculate that laminin alpha1 chain in the forming MTJ undergoes an isoform switch from laminin 1 to laminin 3. Our data indicate a potentially important role for laminin alpha1 chain in skeletal muscle formation. (J Histochem Cytochem 48:201-209, 2000)  相似文献   

5.
Laminin: the crux of basement membrane assembly   总被引:7,自引:0,他引:7  
Laminin-1 is emerging as the key molecule in early embryonic basement membrane assembly. Here we review recent insights into its functions gained from the synergistic application of genetic and structural methods.  相似文献   

6.
Polypeptide chains from human red blood cell membranes   总被引:11,自引:0,他引:11  
  相似文献   

7.
8.
Type IV collagen is a major component of the basement membrane (BM), which consists of six genetically distinct (IV) chains. In this study the expression of these six (IV) chains was demonstrated immunohistochemically. In addition, the 2(IV) and 5(IV) chains were analysed quantitatively by confocal laser scanning microscopy in human urogenital epithelial BM. The 1/2(IV) and 5/6(IV) chains were immunoreactive in the epithelial BM, whereas, 3/4(IV) chains were not. The quantitative analysis revealed that the amount of 2(IV) and 5(IV) chains differed in each urogenital epithelial BM. The content of 5(IV) chains in the epithelial BM of the bladder was differentially high, and that of the foreskin was differentially low. It is concluded that the elasticity of epithelial BM of the bladder may be structurally related to the high content of 5/6(IV) chains.  相似文献   

9.
Homogenates from malignant tumors, obtained from surgery specimens or from transplants of Walker 256 carcinosarcoma in rats, contained an enzyme activity capable of degrading intact 3H-acetylated basement membranes from bovine lens. The enzyme activity from murine tumor was purified about 7500-fold by (NH4)2SO4 fractionation, ion exchange and gel chromatography. The apparent molecular weight of the purified enzyme was approximately 50,000. The rate of degradation of 3H-labelled basement membrane by the murine tumor enzyme was reduced by addition of excess type IV collagen, but not of excess type I, type III or type V collagen. These results suggested specificity of this enzyme for type IV collagen. Inhibitors of serine proteinases, thiol proteinases and soybean trypsin inhibitor were without effect on the enzyme activity. Chelators such as 1,10-phenanthroline or EDTA reduced the activity to control levels, indicating that the enzyme activity was due to a metalloproteinase. Chromatographic and electrophoretic separation of the enzymatic products from 3H-labelled basement membrane and type IV collagen indicated that the enzyme activity was due to a type IV collagenase. The use of basement membrane in the native physiological state as a substrate for the study of basement membrane-degrading activity by homogenates of solid malignant tumors offers an in vitro model for the investigation of the metastatic potential of these tumors.  相似文献   

10.
Molecular architecture of basement membranes   总被引:49,自引:0,他引:49  
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.  相似文献   

11.
Basement membranes are thin sheets of extracellular proteins situated in close contact with cells at various locations in the body. They have a great influence on tissue compartmentalization and cellular phenotypes from early embryonic development onwards. The major constituents of all basement membranes are collagen IV and laminin, which both exist as multiple isoforms and each form a huge irregular network by self assembly. These networks are connected by nidogen, which also binds to several other components (proteoglycans, fibulins). Basement membranes are connected to cells by several receptors of the integrin family, which bind preferentially to laminins and collagen IV, and via some lectin-type interactions. The formation of basement membranes requires cooperation between different cell types since nidogen, for example, is usually synthesized by cells other than those exposed to the basement membranes. Thus many molecular interactions, of variable affinities, determine the final shape of basement membranes and their preferred subanatomical localization.  相似文献   

12.
Connective tissue cells synthesize and secrete a group of matrix metalloproteinases (MMPs), all of which are capable of degrading the extracellular-matrix components. One of them, MMP-3 (stromelysin) has been shown to degrade purified basement-membrane components, collagen IV and laminin [Okada, Y., Nagase, H. & Harris, E. D., Jr. (1986) J. Biol. Chem. 261, 14245-14255]. Here we report that MMP-3 degrades collagen IV and laminin in intact basement membranes from bovine glomeruli (GBM) and bovine anterior-lens capsules (LBM). Degradation products were analysed by SDS/polyacrylamide-gel electrophoresis to determine the number and sizes of polypeptide fragments. Immunoblotting techniques were used to identify the origins of the fragments, i.e. collagen IV or laminin. The fragments of collagen IV were further mapped using specific antibodies that recognize the N-terminal (7 S) domain, the C-terminal (NC-1) domain, or the major triple-helical region between the terminal domains. Degradation of collagen IV was extensive; many fragments were found, from both GBM and LBM, in the Mr range 25,000-380,000. A large fragment of laminin (Mr greater than 380,000) was found in the GBM digests without reduction, but it dissociated into 220,000-Mr chains upon reduction. The results suggest that MMP-3 plays an important role in the catabolism of basement membranes.  相似文献   

13.
Laminin (Mr = 800,000) is a glycoprotein consisting of three chains, A, B1, and B2, and has diverse biological activities. Previously we reported the complete primary structure of the B1 and B2 chains of mouse laminin deduced from cDNA sequence (Sasaki, M., Kohno, K., Kato, S., Martin, G. R., and Yamada, Y. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 935-939; Sasaki, M., and Yamada, Y. (1988) J. Biol. Chem. 262, 17111-17117). Here we describe the isolation, characterization, and sequence of cDNA clones spanning 9,520 bases which encode the entire A chain of mouse laminin. The nucleotide sequence of the clones contains an open reading frame of 3,084 amino acids including 24 amino acids of a signal peptide. The A chain contains some eight distinct domains including alpha-helices, cysteine-rich repeats and globules. There is considerable sequence and structural homology between the A chain and the B1 and B2 chains. However, the A chain has a unique globular structure containing homologous repeats at the carboxyl terminus and constituting one third of the molecular mass of the chain. Furthermore, the A chain contains three globules and three cysteine-rich domains at the amino terminus, whereas the B1 and B2 chains have only two each of such domains. The A chain shows homology to the basement membrane heparan sulfate proteoglycan core protein and the extracellular domain of the Drosophila neurogenic protein Notch. There is an RGD (Arg-Gly-Asp) sequence in one of the cysteine-rich domains of the A chain. This potential cell binding sequence could be active as another adhesion signal in addition to the previously identified cell binding sequence YIGSR (Tyr-Ile-Gly-Ser-Arg) of the B1 chain.  相似文献   

14.
Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal-vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Young's modulus from 0.95 MPa to 3.30 MPa. The apparent Young's modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.  相似文献   

15.
Structure and function of basement membranes   总被引:2,自引:0,他引:2  
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM-like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.  相似文献   

16.
1. Proteoglycans extracted from human and equine glomerular basement membranes (GBM) were purified by ion-exchange chromatography and gel filtration. 2. The glycoconjugates had an apparent molecular mass of 200-400 kDa and consisted of 75% protein and 25% glycosaminoglycan. Glycosidase and HNO2 treatment and the amino sugar and sulfate composition of both proteoglycan preparations identified heparan sulfate (HS) as the predominant saccharide chain. 3. Hydrolysis with trifluoromethanesulfonic acid yielded comparable core proteins with molecular masses of ca 160 and 120 kDa. 4. The HS chains had an apparent molecular mass of 18 kDa. Results of heparitinase digestion and HNO2-treatment indicated a clustering of sulfate groups in the distal part of the HS side chains. 5. Peptide mapping after trypsin, clostripain or V8 protease digestion of radiolabeled human and equine heparan sulfate proteoglycans (HSPG) preparations with three different separation techniques showed large differences. 6. Polyclonal antisera raised against the HSPGs reacted against the core proteins. Both HSPG preparations and their antisera showed ca 40% cross-reactivity. About 50% of monoclonal antisera elicited against one HSPG preparation showed reaction with both HSPG preparations. 7. Polyclonal antisera stained all basement membranes in an intense linear fashion in indirect immunofluorescence studies of kidney sections from horse, man and various mammalian species. 8. Biochemical and immunological data indicate that HSPGs from equine and human GBM have a comparable structure, but the core proteins differ considerably.  相似文献   

17.
The ultrastructure of basement membranes has a homogeneous appearance. The enormous cell biological importance of basement membranes and their components for cell proliferation, migration and differentiation implies that their composition is more complex than their structure suggests. To elucidate the molecular composition of basement membranes in vivo, we optimised immunogold histochemistry to allow the determination of the molecular arrangement of matrix molecules. Basically, we apply a mild fixation and embed the tissues in the hydrophilic LR-Gold. This preserves the basement membrane with a quality similar to freeze substitution. The application of two antibodies directed toward the C- and N-terminal ends of a molecule and coupled to gold particles of different sizes allows determination of the orientation of a molecule within the basement membrane. We were able to demonstrate that the molecular orientation of the laminin-1 molecule changes in the basement membrane according to cell biological needs. We also showed that ultrastructurally identical basement membranes like the ones of the proximal and distal tubules of the kidney have a differing molecular arrangement. Integrin alpha7 influences the molecular composition of the basement membranes at the myotendinous junction. With the help of double labelling at the ultrastructural level we could show that nidogen-1 is co-localised with laminin-1 and only found in fully developed, mature basement membranes. In general, laminin-1, nidogen-1 and collagen type IV are localised over the entire width of basement membranes, with laminin-1 and nidogen-1 co-localised, in accordance with the current basement membrane models. Incidentally, our investigations warn us, that not every matrix protein found at the light microscopic level as a linear staining pattern underneath an epithelium (basement membrane zone) is a real basement membrane component when investigated at the ultrastructural level. Instead, one and the same molecule, e.g. endostatin, can be a basement membrane component in one organ and a matrix molecule in another.  相似文献   

18.
The recently identified nidogen-2 is a matrix protein showing homology to the well-known basement membrane molecule nidogen-1. Nidogen-1 might well serve as a link between laminin-1 and collagen type IV and thus stabilise certain basement membranes in vivo and play a major role in embryogenesis. However, the exact tissue distribution of nidogen-1 and nidogen-2 during human embryogenesis is still unclear. As a first step towards the elucidation of their possible cell biological functions during human development, we compared the distribution of both nidogens during human organogenesis at the light microscope level. Nidogen-2 and nidogen-1 were found to be ubiquitous components of basement membrane zones underneath developing epithelia of most of the major organ systems. However, in the developing intestine and the pancreas anlage, only nidogen-1 was present in the epithelial basement membrane zones of all developmental stages investigated. Our data suggest that nidogen-2 and nidogen-1, as is known for mouse development, could well participate in cell biological functions during human development. These two proteins might well be able to fulfil identical functions during human organogenesis.  相似文献   

19.
Laminin inhibits human keratinocyte migration   总被引:13,自引:0,他引:13  
A quantitative migration assay for human keratinocytes was developed to assess the influence of extracellular matrix molecules on cell motility independently from their effect on cell proliferation. Fibronectin and collagen types I and IV markedly promoted keratinocyte migration, but albumin, type V collagen, and heparan sulfate proteoglycan had little effect. In contrast, laminin inhibited keratinocyte motility and dramatically reduced type IV collagen-induced migration in a concentration-dependent manner. Laminin was not toxic, since it had no apparent effect on morphology, growth, or ability of cells to be passaged. Laminin, a major component of the lamina lucida, may inhibit motility of keratinocytes in vivo. Absence of contact with laminin, which accompanies wounding, may facilitate motility and healing in the epidermis.  相似文献   

20.
Laminin--a glycoprotein from basement membranes.   总被引:194,自引:0,他引:194  
We have isolated a large noncollagenous glycoprotein, laminin, from a mouse tumor that produces basement membrane. The protein consists of at least two polypeptide chains (Mr = 220,000 and Mr = 440,000) joined to each other by disulfide bonds. Laminin and type IV collagen are major constituents of the tumor. Laminin is distinctly different from fibronectin, another component of basement membranes, in amino acid composition and immunological reactivity. Pepsin digestion of laminin releases a large, cystine-rich fragment which retains most of the antigenicity of the original protein. Immunological studies using purified antibody against laminin show that it is produced by a variety of cultured cells. In addition, these antibodies react with the basement membranes of normal tissues, suggesting that this protein or an immunologically related protein is a constituent of the basement membranes of these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号