首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arg- (Rgp) and Lys-gingipains (Kgp) are two individual cysteine proteinases produced by Porphyromonas gingivalis , an oral anaerobic bacterium, and are implicated as major virulence factors in a wide range of pathologies of adult periodontitis. Coaggregation of this bacterium with other oral bacteria is an initial and critical step in infectious processes, yet the factors and mechanisms responsible for this process remain elusive. Here we show that the initial translation products of the rgpA , kgp and hemagglutinin hagA genes are responsible for coaggregation of P. gingivalis and that the proteolytic activity of Rgp and Kgp is indispensable in this process. The rgpA rgpB kgp- and rgpA kgp hagA -deficient triple mutants exhibited no coaggregation activity with Actinomyces viscosus , whereas the kgp -null and rgpA rgpB -deficient double mutants significantly retained this activity. Consistently, the combined action of Rgp- and Kgp-specific inhibitors strongly inhibited the coaggregation activity of the bacterium, although single use of Rgp- or Kgp-specific inhibitor significantly retained this activity. We also demonstrate that the 47- and 43-kDa proteins produced from the translation products of the rgpA , kgp , and hagA genes by proteolytic activity of both Rgp and Kgp are responsible for the coaggregation of P. gingivalis.  相似文献   

2.
Porphyromonas gingivalis and Treponema denticola are major pathogens of periodontal disease. Coaggregation between microorganisms plays a key role in the colonization of the gingival crevice and the organization of periodontopathic biofilms. We investigated the involvement of surface ligands of P. gingivalis in coaggregation. Two triple mutants of P. gingivalis lacking Arg-gingipain A (RgpA), Lys-gingipain (Kgp) and Hemagglutinin A (HagA) or RgpA, Arg-gingipain B (RgpB) and Kgp showed significantly decreased coaggregation with T. denticola, whereas coaggregation with a major fimbriae (FimA)-deficient mutant was the same as that with the P. gingivalis wild-type parent strain. rgpA, kgp and hagA code for proteins that contain 44 kDa Hgp44 adhesin domains. The coaggregation activity of an rgpA kgp mutant was significantly higher than that of the rgpA kgp hagA mutant. Furthermore, anti-Hgp44 immunoglobulin G reduced coaggregation between P. gingivalis wild type and T. denticola. Treponema denticola sonicates adhered to recombinant Rgp domains. Coaggregation following co-culture of the rgpA kgp hagA mutant expressing the RgpB protease with the rgpA rgpB kgp mutant expressing the unprocessed HagA protein was enhanced compared with that of each triple mutant with T. denticola. These results indicate that the processed P. gingivalis surface Hgp44 domains are key adhesion factors for coaggregation with T. denticola.  相似文献   

3.
Porphyromonas gingivalis produces arginine-specific cysteine proteinase (Arg-gingipain, RGP) and lysine-specific cysteine proteinase (Lys-gingipain, KGP) in the extracellular and cell-associated forms. Two separate genes (rgpA and rgpB) and a single gene (kgp) have been found to encode RGP and KGP, respectively. We constructed rgpA rgpB kgp triple mutants by homologous recombination with cloned rgp and kgp DNA interrupted by drug resistance gene markers. The triple mutants showed no RGP or KGP activity in either cell extracts or culture supernatants. The culture supernatants of the triple mutants grown in a rich medium had no proteolytic activity toward bovine serum albumin or gelatin derived from human type I collagen. Moreover, the mutants did not grow in a defined medium containing bovine serum albumin as the sole carbon/energy source. These results indicate that the proteolytic activity of P. gingivalis toward bovine serum albumin and gelatin derived from human type I collagen appears to be attributable to RGP and KGP. The hemagglutinin gene hagA of P. gingivalis possesses the adhesin domain regions responsible for hemagglutination and hemoglobin binding that are also located in the C-terminal regions of rgpA and kgp. A rgpA kgp hagA triple mutant constructed in this study exhibited no hemagglutination using sheep erythrocytes or hemoglobin binding activity, as determined by a solid-phase binding assay with horseradish peroxidase-conjugated human hemoglobin, indicating that the adhesin domains seem to be particularly important for P. gingivalis cells to agglutinate erythrocytes and bind hemoglobin, leading to heme acquisition.  相似文献   

4.
5.
The dual membrane envelopes of Gram-negative bacteria provide two barriers of unlike nature that regulate the transport of molecules into and out of organisms. Organisms have developed several systems for transport across the inner and outer membranes. The Gram-negative periodontopathogenic bacterium Porphyromonas gingivalis produces proteinase and adhesin complexes, gingipains/adhesins, on the cell surface and in the extracellular milieu as one of the major virulence factors. Gingipains and/or adhesins are encoded by kgp, rgpA, rgpB, and hagA on the chromosome. In this study, we isolated a P. gingivalis mutant (porT), which showed very weak activities of gingipains in the cell lysates and culture supernatants. Subcellular fractionation and immunoblot analysis demonstrated that precursor forms of gingipains and adhesins were accumulated in the periplasmic space of the porT mutant cells. Peptide mass fingerprinting and N-terminal amino acid sequencing of the precursor proteins and the kgp'-'rgpB chimera gene product in the porT mutant indicated that these proteins lacked the signal peptide regions, consistent with their accumulation in the periplasm. The PorT protein seemed to be membrane-associated and exposed to the periplasmic space, as revealed by subcellular fractionation and immunoblot analysis using anti-PorT antiserum. These results suggest that the membrane-associated protein PorT is essential for transport of the kgp, rgpA, rgpB, and hagA gene products across the outer membrane from the periplasm to the cell surface, where they are processed and matured.  相似文献   

6.
Arginine-specific cysteine proteinase (Arg-gingipain [RGP], a major proteinase secreted from the oral anaerobic bacterium Porphyromonas gingivalis, is encoded by two separate genes (rgpA and rgpB) on the P. gingivalis chromosome and widely implicated as an important virulence factor in the pathogenesis of periodontal disease (K. Nakayama, T. Kadowaki, K. Okamoto, and K. Yamamoto, J. Biol. Chem. 270:23619-23626, 1995). In this study, we investigated the role of RGP in the formation of P. gingivalis fimbriae which are thought to mediate adhesion of the organism to the oral surface by use of the rgp mutants. Electron microscopic observation revealed that the rgpA rgpB double (RGP-null) mutant possessed very few fimbriae on the cell surface, whereas the number of fimbriae of the rgpA or rgpB mutant was similar to that of the wild-type parent strain. The rgpB+ revertants that were isolated from the double mutant and recovered 20 to 40% of RGP activity of the wild-type parent possessed as many fimbriae as the wild-type parent, indicating that RGP significantly contributes to the fimbriation of P. gingivalis as well as to the degradation of various host proteins, disturbance of host defense mechanisms, and hemagglutination. Immunoblot analysis of cell extracts of these mutants with antifimbrilin antiserum revealed that the rgpA rgpB double mutant produced small amounts of two immunoreactive proteins with molecular masses of 45 and 43 kDa, corresponding to those of the precursor and mature forms of fimbrilin, respectively. The result suggests that RGP may function as a processing proteinase for fimbrilin maturation. In addition, a precursor form of the 75-kDa protein, one of the major outer membrane proteins of P. gingivalis, was accumulated in the rgpA rgpB double mutant but not in the single mutants and the revertants, suggesting an extensive role for RGP in the maturation of some of the cell surface proteins.  相似文献   

7.
Porphyromonas gingivalis possesses a hemoglobin receptor (HbR) protein on the cell surface as one of the major components of the hemoglobin utilization system in this periodontopathogenic bacterium. HbR is intragenically encoded by the genes of an arginine-specific cysteine proteinase (rgpA), lysine-specific cysteine proteinase (kgp), and a hemagglutinin (hagA). Here, we have demonstrated that human lactoferrin as well as hemoglobin have the abilities to bind purified HbR and the cell surface of P. gingivalis through HbR. The interaction of lactoferrin with HbR led to the release of HbR from the cell surface of P. gingivalis. This lactoferrin-mediated HbR release was inhibited by the cysteine proteinase inhibitors effective to the cysteine proteinases of P. gingivalis. P. gingivalis could not utilize lactoferrin for its growth as an iron source and, in contrast, lactoferrin inhibited the growth of the bacterium in a rich medium containing hemoglobin as the sole iron source. Lactoferricin B, a 25-amino acid-long peptide located at the N-lobe of bovine lactoferrin, caused the same effects on P. gingivalis cells as human lactoferrin, indicating that the effects of lactoferrin might be attributable to the lactoferricin region. These results suggest that lactoferrin has a bacteriostatic action on P. gingivalis by binding HbR, removing it from the cell surface, and consequently disrupting the iron uptake system from hemoglobin.  相似文献   

8.
Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P. gingivalis was investigated from subjects displaying either chronic periodontitis or periodontal abscess. The Cv genotypes, based on gene variation of fimbriae (fimA), Lys-specific cystein proteinase (kgp) and Arg-specific cystein proteinase (prpR1/rgpA), were evaluated by PCR. The isolates were also subjected to capsular polysaccharide K-serotyping. A total of 18 Cv genotype variants based on fimA: kgp: rgpA were identified, of which II:I:A and II:II:A Cv genotypes (53.3%) were the two most frequently detected combinations. Moreover, 36% of the isolates were K-typeable, with the K6 serotype being the most prevalent (23%). Two isolates had the same genotype as the virulent strain W83. The results indicate that chronic periodontitis is not associated with a particularly virulent clonal type. A highly virulent genotype (e.g. strain W83) of P. gingivalis can be found in certain periodontitis patients.  相似文献   

9.
10.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

11.
Abstract Using a visual coaggregation assay, 43% (6 of 14) of Prevotella nigrescens and 50% (4 of 8) of Prevotella intermedia strains coaggregated with Actinomyces naeslundii strains which represented the six Actinomyces coaggregation groups (A to F). For both species, coaggregation occurred most frequently with A. naeslundii strains from coaggregation groups C, D and E. No coaggregation was observed with Actinomyces israelii , Actinomyces odontolyticus or six oral Streptococcus species. Coaggregation was not inhibited by lactose, saliva or serum. Pretreatment of Prevotella strains with heat, SDS and proteinase K abolished coaggregation when the treated cells were added to untreated Actinomyces strains. The same pretreatment of the Actinomyces strains had no effect on their ability to coaggregate with untreated Prevotella strains. Pretreatment of all coaggregating P. nigrescens strains with trypsin abolished coaggregation, whereas the coaggregation ability of the P. intermedia and Actinomyces strains was resistant to trypsin pretreatment. Pretreatment of the strains of both Prevotella species and the Actinomyces with periodate abolished coaggregation in all cases. These results suggest that the Prevotella strains each possess a protein coaggregation adhesin, which for the P. intermedia strains is resistant to trypsin, that interacts with a non-protein receptor on the A. naeslundii strains.  相似文献   

12.
Porphyromonas gingivalis, an anaerobic gram-negative bacterium associated with chronic periodontitis, can agglutinate human erythrocytes. In general, hemagglutination can be considered the ability to adhere to host cells; however, P. gingivalis-mediated hemagglutination has special significance because heme markedly accelerates growth of this bacterium. Although a number of studies have indicated that a major hemagglutinin of P. gingivalis is intragenically encoded by rgpA, kgp, and hagA, direct evidence has not been obtained. We demonstrated in this study that recombinant HGP44(720-1081), a fully processed HGP44 domain protein, had hemagglutinating activity but that an unprocessed form, HGP44(720-1138), did not. A peptide corresponding to residues 1083 to 1102, which was included in HGP44(720-1138) but not in HGP44(720-1081), could bind HGP44(720-1081) in a dose-dependent manner and effectively inhibited HGP44(720-1081)-mediated hemagglutination, indicating that the interdomain regional amino acid sequence may function as an intramolecular suppressor of hemagglutinating activity. Analyses by solid-phase binding and chemical cross-linking suggested that HGP44 interacted with glycophorin A on the erythrocyte membrane. Glycophorin A and, more effectively, asialoglycophorin, which were added exogenously, inhibited HGP44(720-1081)-mediated hemagglutination. Treatment of erythrocytes with RgpB proteinase resulted in degradation of glycophorin A on the membrane and a decrease in HGP44(720-1081)-mediated hemagglutination. Surface plasmon resonance detection analysis revealed that HGP44(720-1081) could bind to asialoglycophorin with a dissociation constant of 3.0 x 10(-7) M. These results indicate that the target of HGP44 on the erythrocyte membrane appears to be glycophorin A.  相似文献   

13.
A radioligand assay was designed to detect and compare specific hemin binding by the periodontal anaerobic black-pigmenting bacteria (BPB) Porphyromonas gingivalis and Prevotella intermedia. The assay included physiological concentrations of the hemin-binding protein rabbit serum albumin (RSA) to prevent self-aggregation and nonspecific interaction of hemin with cellular components. Under these conditions, heme-starved P. intermedia cells (two strains) expressed a single binding site species (4,100 to 4,600 sites/cell) with a dissociation constant (Kd) of 1.0 x 10(-9) M. Heme-starved P. gingivalis cells (two strains) expressed two binding site species; the higher-affinity site (1,000 to 1,500 sites/cell) displayed a Kd of between 3.6 x 10(-11) and 9.6 x 10(-11) M, whereas the estimated Kd of the lower-affinity site (1.9 x 10(5) to 6.3 x 10(5) sites/cell) ranged between 2.6 x 10(-7) and 6.5 x 10(-8) M. Specific binding was greatly diminished in heme-replete cells of either BPB species and was not displayed by iron-replete Escherichia coli cells, which bound as much hemin in the absence of RSA as did P. intermedia. Hemin binding by BPB was reduced following treatment with protein-modifying agents (heat, pronase, and N-bromosuccinimide) and was blocked by protoporphyrin IX and hemoglobin but not by Congo red. Hemopexin also inhibited bacterial hemin binding. These findings indicate that both P. gingivalis and P. intermedia express heme-repressible proteinaceous hemin-binding sites with affinities intermediate between those of serum albumin and hemopexin. P. gingivalis exhibited a 10-fold-greater specific binding affinity and greater heme storage capacity than did P. intermedia, suggesting that the former would be ecologically advantaged with respect to heme acquisition.  相似文献   

14.
Coaggregation occurred between Porphyromonas gingivalis and mutans streptococci. The coaggregation was completely inhibited by l -arginine, Nα-p-tosyl-l -lysine chloromethyl ketone (TLCK), and a trypsin inhibitor, and weakly inhibited by l -lysine, N-ethylmaleimide, lysozyme, and human whole saliva. The results of heat and proteinase K treatment suggested that a heat-labile proteinaceous substance of P. gingivalis and a heat-stable substance of mutans streptococci may play a role in the coaggregation. Mutans streptococci also aggregated in the presence of the heat-labile factor in the supernatant of P. gingivalis. The aggregation was also inhibited by l -arginine, TLCK, and a trypsin inhibitor.  相似文献   

15.
The cysteine proteinase produced in the culture supernatant of Porphyromonas gingivalis was extensively purified. Haemagglutination type assays in which the enzyme was titrated against a fixed concentration of erythrocytes, showed that low levels of enzyme directly caused lysis of the red blood cells. However, using the same assay, the presence of stoichiometric amounts of the thiol blocking agent, 2,2'-dipyridyl disulphide (2-PDS) specifically inhibited the action of the enzyme or its haemagglutination with W83 cells or vesicles. In all cases, electron micrographs revealed that in the presence of 2-PDS the erythrocytes remained intact. Thiol activator free enzyme or aerated, inactivated enzyme had no effect on the red blood cells. These results show conclusively that the secreted cysteine proteinase of P. gingivalis causes lysis of erythrocytes and must now be regarded as a potent virulence determinant of P. gingivalis.  相似文献   

16.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

17.
Okuda T  Kokubu E  Kawana T  Saito A  Okuda K  Ishihara K 《Anaerobe》2012,18(1):110-116
The formation of biofilm by anaerobic, Gram-negative bacteria in the subgingival crevice plays an important role in the development of chronic periodontitis. The aim of this study was to characterize the role of coaggregation between Fusobacterium nucleatum and Prevotella species in biofilm formation. Coaggregation between F. nucleatum and Prevotella species was determined by visual assay. Effect of co-culture of the species on biofilm formation was assessed by crystal violet staining. Effect of soluble factor on biofilm formation was also examined using culture supernatant and two-compartment co-culture separated by a porous membrane. Production of autoinducer-2 (AI-2) by the organisms was evaluated using Vibrio harveyi BB170. Cells of all F. nucleatum strains coaggregated with Prevotella intermedia or Prevotella nigrescens with a score of 1-4. Addition of ethylenediamine tetraacetic acid or l-lysine inhibited coaggregation. Coaggregation disappeared after heating of P. intermedia or P. nigrescens cells, or Proteinase K treatment of P. nigrescens cells. Co-culture of F. nucleatum ATCC 25586 with P. intermedia or P. nigrescens strains increased biofilm formation compared with single culture (p < 0.01); co-culture with culture supernatant of these strains, however, did not enhance biofilm formation by F. nucleatum. Production of AI-2 in Prevotella species was not related to enhancement of biofilm formation by F. nucleatum. These findings indicate that physical contact by coaggregation of F. nucleatum strains with P. intermedia or P. nigrescens plays a key role in the formation of biofilm by these strains.  相似文献   

18.
The obligately anaerobic bacterium Porphyromonas gingivalis produces characteristic black-pigmented colonies on blood agar. It is thought that the black pigmentation is caused by haem accumulation and is related to virulence of the microorganism. P. gingivalis cells expressed a prominent 19 kDa protein when grown on blood agar plates. Analysis of its N-terminal amino acid sequence indicated that the 19 kDa protein was encoded by an internal region (HGP15 domain) of an arginine-specific cysteine proteinase (Arg-gingipain, RGP)-encoding gene ( rgp1 ) and was also present in genes for lysine-specific cysteine proteinases ( prtP and kgp ) and a haemagglutinin ( hagA ) of P. gingivalis . The HGP15 domain protein was purified from an HGP15-overproducing Escherichia coli and was found to have the ability to bind to haemoglobin in a pH-dependent manner. The anti-HGP15 antiserum reacted with the 19 kDa haemoglobin-binding protein in the envelope of P. gingivalis. P. gingivalis wild-type strain showed pH-dependent haemoglobin adsorption, whereas its non-pigmented mutants that produced no HGP15-related proteins showed deficiency in haemoglobin adsorption. These results strongly indicate a close relationship among HGP15 production, haemoglobin adsorption and haem accumulation of P. gingivalis .  相似文献   

19.
Liu Y  Abaibou H  Fletcher HM 《Plasmid》2000,44(3):250-261
Several reports have supported the association of Porphyromonas gingivalis with periodontal disease. Genetic studies are vital for understanding the relative importance of virulence factors in this organism. Thus, gene reporters may prove useful for the study of gene expression in this organism. We have investigated the use of the green fluorescent protein (GFP), bacterial luciferase, and bifunctional xylosidase/arabinosidase enzyme (XA) as reporters of gene expression in P. gingivalis. Fusion cassettes containing the promoterless tetracycline resistant gene [tetA(A)Q2] and the promoterless gfp, luxAB, or xa gene were placed under the control of the rgpA promoter in P. gingivalis W83 using recombinational allelic exchange. The rgpA gene encodes for an arginine-specific protease in P. gingivalis. No GFP activity was detected in P. gingivalis isogenic mutants carrying the rgpA::gfp-tetA(Q)2 fusion construct. Luciferase activity in P. gingivalis mutants carrying the rgpA::luxAB-tetA(Q)2 fusion was only detected in the presence of exogenous FMNH(2). xa gene expression in P. gingivalis with the rgpA::xa-tetA(Q)2 fusion construct was detected in crude extracts using rho-nitrophenol derivatives as substrate and on agar plates with methylumbelliferyl derivatives under long-wave ultraviolet light. This indicates that both luxAB and xa genes can be used as reporters of gene expression in P. gingivalis. However, only the xa gene can be used as a noninvasive reporter gene.  相似文献   

20.
We have previously reported on the identification and characterization of the Porphyromonas gingivalis A7436 strain outer membrane receptor HmuR, which is involved in the acquisition of hemin and hemoglobin. We demonstrated that HmuR interacts with the lysine- (Kgp) and arginine- (HRgpA) specific proteases (gingipains) and that Kgp and HRgpA can bind and degrade hemoglobin. Here, we report on the physiological significance of the HmuR-Kgp complex in heme utilization in P. gingivalis through the construction and characterization of a defined kgp mutant and a hmuR kgp double mutant in P. gingivalis A7436. The P. gingivalis kgp mutant exhibited a decreased ability to bind both hemin and hemoglobin. Growth of this strain with hemoglobin was delayed and its ability to utilize hemin as a sole iron source was diminished as compared to the wild type strain. Inactivation of both the hmuR and kgp genes resulted in further decreased ability of P. gingivalis to bind hemoglobin and hemin, as well as diminished ability to utilize either hemin or hemoglobin as a sole iron source. Collectively, these in vivo results further confirmed that both HmuR and Kgp are involved in the utilization of hemin and hemoglobin in P. gingivalis A7436.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号