首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of various phenolics and aromatic amines by manganese-dependent peroxidase (MnP) of Bjerkandera adusta was examined in aqueous organic media. MnP retained its activities in several 70% (v/v) aqueous solutions of water-miscible organic solvents including ethylene glycol, diethylene glycol, acetone and acetonitrile. The absorption spectra of MnP in these aqueous organic media were similar to that observed in the reaction without solvent addition, indicating that the heme of MnP was little affected by the addition of these water-miscible organic solvents. MnP was also found to oxidize Mn(II) to Mn(III) in these 70% (v/v) aqueous organic media. The oxidation of Mn(II) by MnP was correlated with the Dimroth–Reichardt parameter, ET(30), of the solvents. Furthermore, MnP catalyzed the oxidation of anisidines, aminophenols, phenylenediamines and phenolics in aqueous 70% (v/v) acetone, acetonitrile and diethylene glycol media. Aromatic amines that have high hydrophobicity were shown to be suitable for the reaction of MnP in aqueous water-miscible organic media.  相似文献   

2.
Unusual salt and solvent dependence of a protease from an extreme halophile   总被引:3,自引:0,他引:3  
An extracellular protease has been purified from the extreme halophile, Halobacterium halobium. The irreversible inactivation kinetics of this halophilic protease in salt concentrations below 4M consists of autolytic and nonautolytic (steady-state denaturation) components. Addition of organic solvents has a dramatic effect on enzyme stability in low salt media. For example, in 0.36M NaCl, the inactivation rate constant for the nonautolytic component in 20% (v/v) ethylene glycol is ca. 3 orders of magnitude lower than in 20% (v/v) tetrahydrofuran. Enzyme stability in different aqueous/organic solvent mixtures correlates strongly to the salting-out capacity of the solvent. Solvents that act to increase the apparent hydrophobicity of the enzyme's core stabilize the enzyme in much the same way as salting-out salts. This mechanism is not important for the nonhalophilic protease, subtilisin Carlsberg, and demonstrates that halophilic enzymes have evolved highly specialized reaction medium requirements. Moreover, through the use of organic solvents, it is shown that high concentrations of salts are not absolutely necessary for high enzyme stability, and this may have important process considerations. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 471-479, 1997.  相似文献   

3.
Screening for microorganisms oxidizing ethylene glycol to glycolic acid was carried out. Among stock cultures, several yeasts and acetic acid bacteria showed high glycolic acid producing activity. Pichia naganishii AKU 4267 formed the highest concentration of glycolic acid, 35.3 g/l, from 10% (v/v) ethylene glycol (molar conversion yield, 26.0%). Among soil isolates, Rhodotorula sp. 3Pr-126, isolated using propylene glycol as a sole carbon source, formed the highest concentration of glycolic acid, 25.1 g/l, from 10% (v/v) ethylene glycol (molar conversion yield, 18.5%). Rhodotorula sp. 3Pr-126 showed higher activity toward 20% (v/v) ethylene glycol than P. naganishii AKU 4267. Optimization of the conditions for glycolic acid production was investigated using P. naganishii AKU 4267 and Rhodotorula sp. 3Pr-126. Under the optimized conditions, P. naganishii AKU 4267 and Rhodotorula sp. 3Pr-126 formed 105 and 110 g/l of glycolic acid (corrected molar conversion yields, 88.0 and 92.2%) during 120 h of reaction, respectively.  相似文献   

4.
We studied the effect of replacing water by ethylene glycol as solvent on the properties of skeletal muscle myosin, myosin subfragment-1 (S1) and heavy meromyosin. Ethylene glycol (50%, v/v) had no detectable effect on the affinity of myosin or actomyosin for the substrate analogue 5'-adenylyl imidodiphosphate (AMPPNP). However, the rate constants for formation and dissociation of the myosin X MgAMPPNP complex were reduced 200-fold; the logarithm of the dissociation rate was roughly proportional to the fractional concentration of ethylene glycol. Nucleotide dissociation was accelerated at least 300-fold by pure actin but remained slow with regulated actin in the absence of Ca2+. Ethylene glycol substitution reduced the affinity of S1 and the S1 X MgAMPPNP complex for actin equally (100-fold at 50% ethylene glycol). These results show that ethylene glycol has specific effects on myosin's enzymic mechanism, which can account for its effect on the tension and stiffness of glycerinated muscle fibres.  相似文献   

5.
Cyclodextrin glycosyltransferase (EC 2.4.1.19, CGTase) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. Addition of small amounts (10% v/v) of polar organic solvents can affect both the overall production yield and the type of cyclodextrin produced from a maltodextrin substrate under simulated industrial process conditions. Using CGTase from Thermoanaerobacter sp. all solvents produced an increase in cyclodextrin yield when compared with a control, the greatest increase being obtained with addition of ethanol (26%). In addition product selectivity was affected by the nature of the organic solvent used: beta-cyclodextrin was favoured in the absence of any solvent and on the addition of dimethylsulphoxide, t-butanol and dimethylformanide while alpha-cyclodextrin was favoured by addition of acetonitrile, ethanol and tetrahydrofuran. With CGTase from Bacillus circulans strain 251 relatively smaller increases in overall cyclodextrin production were achieved (between 5-10%). Addition of t-butanol to a B. circulans catalysed reaction however did produce the largest selectivity for beta-cyclodextrin of any solvent-enzyme combination (82%). The effect of solvent addition was shown not to be related to the product inhibition of CGTase, but may be related to reduced competition from the intermolecular transglycosylation reaction that causes degradation of cyclodextrin products. This rate of this reaction was shown to be dependent on the nature of the organic solvent used.  相似文献   

6.
Fumarase catalysed hydration of fumarate was investigated in water/organic solvent one-phase systems. The organic solvents used were ethylene glycol, glycerol and dimethylformamide. The effects of the amount of organic solvent on the maximum velocity (Vmax), the Michaelis-Menten constant (KM) and the equilibrium constant (Keq) were studied in all the reaction media. Together with a denaturing power of the solvent evidenced by a systematic decrease of Vmax also a surprising decrease of the KM was registered as the percentage of organic solvent in the reaction media was increased. While the equilibrium constant of the reaction (Keq = [l-malate]/[fumarate]) decreased when the percentage of organic solvent was raised. An interpretation of these facts was given. Time-dependent denaturation was also investigated and glycerol resulted the less denaturing of the solvents used, while the aprotic DMF exhibited the highest deactivation.  相似文献   

7.
Solid-phase peptide synthesis using nanoparticulate amino acids in water.   总被引:1,自引:0,他引:1  
Solid-phase peptide synthesis has many advantages compared with solution peptide synthesis. However, this procedure requires a large amount of organic solvents. Since safe organic solvent waste disposal is an important environmental problem, a technology based on coupling reaction of suspended nanoparticle reactants in water was studied. Fmoc-amino acids are used widely, but most of them show low solubility in water. We prepared well-dispersible Fmoc-amino acid nanoparticles in water by pulverization using a planetary ball mill in the presence of poly(ethylene glycol). Leu-enkephalin amide was prepared successfully using the nanoparticulate Fmoc-amino acid on a poly(ethylene glycol)-grafted Rink amide resin in water.  相似文献   

8.
Penicillin acylase (PA) is used in the industrial production of 6-amino penicillanic acid (6-APA). However, by proper control of reaction medium, the enzyme can be used in the reverse synthesis of β-lactam antibiotics from the corresponding β-lactam nuclei and suitable acyl donors. Under thermodynamically controlled strategy, the use of organic cosolvents can favor synthesis over hydrolysis by lowering water activity and favoring the non-ionic reactive species. Under kinetically controlled strategy using activated acyl donors, organic solvents can favor synthesis by depressing hydrolytic reactions. Results are presented on the synthesis of ampicillin from phenylglycine methyl ester and 6-APA with immobilized Escherichia coli PA in the presence of organic cosolvents. Several solvents were tested in terms of enzyme stability and solubility of substrates. Ethylene glycol, glycerol, 1–2 propanediol and 1–3 butanediol were selected accordingly and ampicillin synthesis was performed in all of them. Best results in terms of yield and productivity were obtained with ethylene glycol, with which further studies were conducted. Variables studied were enzyme to limiting substrate ratio, acyl acceptor to acyl donor ratio, organic solvent concentration, pH and temperature. Experimental design based on a two-level fractional factorial design was conducted. pH was determined as the most sensitive variable and was further optimized. The best conditions for ampicillin synthesis in terms of productivity, within the range of values studied for those variables, were pH 7.4, 28°C, 36 US PA/mmol 6-APA, 3 mol PGME/mol 6-APA and 45 % (v/v) ethylene glycol concentration. Productivity was 7.66 mM ampicillin/h, which corresponds to a specific productivity of 7.02 μmol ampicillin/h US at 55 % yield. Productivity was lower than in buffer but product yield was higher because of the much lower relative hydrolysis rates.  相似文献   

9.
1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0 degrees C is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in turn was found to be superior to methanol. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at -25 degrees C in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as -40 degrees C in 50% (v/v) ethylene glycol. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as -25 degrees C. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly.  相似文献   

10.
The present study was performed to develop a suitable cryoprotectant solution for cryopreservation of rat two-cell stage embryos. First, we examined the cell permeability of several cryoprotectants; propylene glycol had the fastest permeability compared to dimethyl sulfoxide, ethylene glycol, and glycerol. Embryos were then exposed to a solution containing propylene glycol to evaluate its effects on fetal development. As the development was similar to that of fresh embryos, P10 (10% v/v propylene glycol in PB1) was used as a pretreatment solution. Next, the effects of the vitrification solution components (sucrose, propylene glycol, ethylene glycol, and Percoll) were examined by observing the vitrification status; 10% v/v propylene glycol, 30% v/v ethylene glycol, 0.3 mol sucrose, and 20% v/v Percoll in PB1 (PEPeS) was the minimum essential concentration for effective vitrification without the formation of ice crystals or freeze fractures.  相似文献   

11.
RCL is a c-Myc target with tumorigenic potential. Genome annotation predicted that RCL belonged to the N-deoxyribosyltransferase family. However, its putative relationship to this class of enzymes did not lead to its precise biochemical function. The purified native or N-terminal His-tagged recombinant rat RCL protein expressed in Escherichia coli exhibits the same enzyme activity, deoxynucleoside 5'-monophosphate N-glycosidase, never before described. dGMP appears to be the best substrate. RCL opens a new route in the nucleotide catabolic pathways by cleaving the N-glycosidic bond of deoxynucleoside 5'-monophosphates to yield two reaction products, deoxyribose 5-phosphate and purine or pyrimidine base. Biochemical studies show marked differences in the terms of the structure and catalytic mechanism between RCL and of its closest enzyme family neighbor, N-deoxyribosyltransferase. The reaction products of this novel enzyme activity have been implicated in purine or pyrimidine salvage, glycolysis, and angiogenesis, and hence are all highly relevant for tumorigenesis.  相似文献   

12.
Successful freeze-etching of a coenocyte has been accomplished with glutaraldehyde stabilization followed by infiltration with cryoprotectant. Hyphae of the coenocytic water mold Achlya were stabilized with 5% glutaraldehyde in phosphate buffer. Gradual infiltration by dropwise addition of the cryoprotectant (25% glycerol, 10% ethylene glycol, distilled water, v/v) is accomplished over a period of 8-10 hr on a shaker. Subsequent freeze-etching is carried out by standard procedures.  相似文献   

13.
1. The effect of dimethyl sulfoxide (Me2SO) and ethylene glycol on two different preparations of the sarcoplasmic reticulum, i.e. native membranes and membranes whose phospholipids were hydrolyzed by phospholipase A, were investigated using ATP and p-nitrophenylphosphate as substrates. 2. Me2SO and ethylene glycol inhibit both calcium-dependent ATP hydrolysis and ATP-supported calcium transport by native vesicles. 3. In contrast, calcium-dependent p-nitrophenylphosphatase activity as well as p-nitrophenyl-phosphate-supported calcium transport are activated by both agents at concentrations lower than 30% (v/v). 4. Me2SO strongly stimulates p-nitrophenylphosphate activity of vesicles treated with phospholipase A, but has relatively little effect on p-nitrophenylphosphatase activity of native vesicles. 5. Up to a concentration of approximately 40% Me2SO (v/v) the inhibiting effect on the calcium-dependent ATPase is fully reversible, but only partially reversible on calcium transport. 6. In the concentration range where Me2SO inhibits ATP hydrolysis and calcium transport, it does not affect ATP binding to the membranes nor calcium-dependent formation of phospho-protein. 7. The rate of dephosphorylation as well as the rate of Pi exchange between ATP and ADP are markedly reduced by the presence of 30% Me2SO (v/v). 8. While Me2SO inhibits passive calcium efflux, ethylene glycol produces a considerable activation. 9. ADP-dependent calcium efflux and ATP synthesis are activated by 15% Me2SO (v/v). Ethylene glycol reduces both activities. 10. The results suggest that the respective substrate-enzyme complexes are differently affected by the agents, resulting either in inhibition or stimulation  相似文献   

14.
S Grace  D Dunaway-Mariano 《Biochemistry》1983,22(18):4238-4247
The present study was undertaken for the purpose of evaluating the solvent perturbation technique as a method to identify enzyme catalytic residues. For establishment of expected directions and sizes of pKa perturbations for different types of acids in different classes of solvents, a study of the pKa of a series of acids in mixed solvent systems was carried out. Consistent with previous findings, the presence of organic solvents (25% v/v) increased the pKa values of neutral acids while it decreased or did not change the pKa values of cationic acids. The size of the perturbation observed was dependent on the nature of the organic solvent and on the polarity of the neutral form of the acid. The solvent perturbation studies were then extended to the catalytic aspartate residue of yeast hexokinase. The pKa of this residue was determined from the MgATP V/K profile measured in the presence and absence of organic solvents (25% v/v). While dimethylformamide and methanol induced small but perhaps significant increases in the observed pKa, dimethyl sulfoxide and propylene glycol did not. The pKa values, from the MgATP V/K profiles measured in the presence of fully saturating glucose, were not significantly increased by the organic solvents. The pKi vs. pH profile for the competitive inhibitor lyxose was also measured in the presence and absence of organic solvents. While methanol (25% v/v), dimethylformamide (25% v/v), and dioxane (17.5% v/v) induced a large increase in the pKa, propylene glycol and dimethyl sulfoxide (25% v/v) did not. The results from this investigation indicate that the solvent perturbation technique should not be relied upon indiscriminately.  相似文献   

15.
The rapid conversion of cholesterol to cholestenone by Nocardia in the presence of high proportions of water-immiscible solvent has been demonstrated. At high agitator speeds, the reaction rate was not limited by the rates of transfer of oxygen or cholesterol to the microorganisms. Using 100 g of thawed cells in 200 ml of carbon tetrachloride containing 16% (w/v) cholesterol, at 20 degrees C cholestenone was formed at 7 g/hr. Cells could be separated easily from the organic solvent and reused. After 7 runs (69 hr) the reaction rate had fallen only to half the value for the first run.  相似文献   

16.
G Benaim  L de Meis 《FEBS letters》1989,244(2):484-486
In this report it is shown that organic solvents mimic the stimulatory effects of calmodulin and acidic phospholipids on the erythrocyte plasma membrane Ca2+-ATPase. The solvents used were dimethyl sulfoxide (20%, v/v), glycerol (20% v/v), ethylene glycol (20%, v/v) and polyethylene glycol (Mr 6000-8000) (10%, w/v). These solvents increased both the affinity for Ca2+ and the turnover number of the enzyme. The increase in Ca2+ affinity is additive to that achieved with calmodulin. The calcium cooperativity observed in the presence of calmodulin disappears after the addition of dimethyl sulfoxide to the medium. The present data support the proposal that activation of the erythrocyte plasma membrane Ca2+-ATPase is promoted by hydrophobic interactions along the enzyme molecule.  相似文献   

17.
Abstract

The effect of dielectric constant of medium on protonation equilibria has been studied by determining protonation constants of ethylenediamine pH metrically in various concentrations (0–60%v/v) of acetoni-trile– and ethylene glycol–water mixtures, at an ionic strength of 0.16mol L?1 and at 303.0 K. MINIQUAD75 computer program has been used for the calculation of protonation constants. Linear and non-linear variations of step-wise protonation constants with reciprocal of dielectric constant of the solvent mixtures have been attributed to the dominance of the electrostatic and non-electrostatic forces, respectively. The trend is explained on the basis of solute–solute and solute–solvent interactions, solvation, proton transfer processes and dielectric constants of the media.  相似文献   

18.
We have studied the reaction of ferricytochrome c, methemoglobin and metmyoglobin with OH and alcohol radicals (methanol, ethanol, ethylene glycol and glycerol). These radicals can be divided into three groups: 1. The OH radicals which reduce the ferricytochrome c with a yield of (30 +/- 10)% and methemoglobin with a yield of (40 +/- 10)%. They do not reduce metmyoglobin. The reduction is not a normal bimolecular reaction but is most probably an intramolecular electron transfer of a protein radical. 2. Methanol and ethanol radicals which reduce all three hemoproteins with a yield of (100 +/- 5)%. This reduction is a normal bimolecular reaction. 3. Glycerol radicals which do not reduce the ferrihemoproteins under our experimental conditions. Ethylene glycol radicals do not reduce ferricytochrome c and metmyoglobin but they do reduce methemoglobin with a yield of (30 +/- 10)%.  相似文献   

19.
The rapid conversion of cholesterol to cholestenone by Nocardia in the presence of high proportions of water-immiscible solvent has been demonstrated. At high agitator speeds, the reaction rate was not limited by the rates of transfer of oxygen or cholesterol to the microorganisms. Using 100 g of thawed cells in 200 ml of carbon tetrachloride containing 16% (w/v) cholesterol, at 20°C cholestenone was formed at 7 g/hr. Cells could be separated easily from the organic solvent and reused. After 7 runs (69 hr) the reaction rate had fallen only to half the value for the first run.  相似文献   

20.
Mouse blastocysts were exposed to solutions containing four concentrations (10, 20, 30 and 40% v/v) of six permeating cryoprotectants (glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide, 1,3-butanediol and 2,3-butanediol) in phosphate-buffered saline (PBS) with calf serum (CS) at room temperature (20-22 degrees C). Blastocysts were exposed to these solutions for various periods, diluted into PBS plus CS with or without 1 mol trehalose l-1 solution and their subsequent survival in vitro was examined. Two-way anova showed a significant interaction (P < 0.01) between cryoprotectant type, concentration of cryoprotectant and method of dilution. However, no significant interaction was observed between cryoprotectant type and duration of exposure. Results suggest that cryoprotectant-induced injury to nonfrozen blastocysts is variable and depends on the cryoprotectant used. On the basis of toxicity assays, ethylene glycol was the least harmful and was combined with dimethyl sulfoxide and 1,3-butanediol to produce a new vitrification solution. Mouse blastocysts were successfully cryopreserved using a vitrification solution (designated as VSv) consisting of 20% ethylene glycol, 20% dimethyl sulfoxide and 10% 1,3-butanediol (v/v). Embryos were equilibrated in two steps, first in an equilibration solution (designated as ESv: 10% ethylene glycol, 10% dimethyl sulfoxide and 5% 1,3-butanediol; v/v) and then to VSv or one-step in VSv at different exposure times at room temperature, and then vitrified by direct plunging into liquid nitrogen. High developmental rates were obtained in vitro when the embryos were exposed to ESv and VSv for 3 and 0.5 min, respectively (96.2%) or exposed to VSv for 0.5 min (95.4%). Prolonged exposure time proved detrimental to subsequent embryo development in vitro. When vitrified warmed embryos were transferred immediately to pseudopregnant recipients, the rate of development to normal fetuses did not significantly differ from that of the nonvitrified control (two-step, 54.2 and one-step, 45.0 versus 60.0%, P > 0.05). These results suggest that the simple vitrification solution described in this study is effective for the cryopreservation of mouse blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号