首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the pathophysiological alterations seen with combined burn and smoke inhalation injuries by focusing on pulmonary vascular permeability and cardiopulmonary function compared with those seen with either burn or smoke inhalation injury alone. To estimate the effect of factors other than injury, the experiments were also performed with no injury in the same experimental setting. Lung edema was most severe in the combined injury group. Our study revealed that burn injury does not affect protein leakage from the pulmonary microvasculature, even when burn is associated with smoke inhalation injury. The severity of lung edema seen with the combined injury is mainly due to augmentation of pulmonary microvascular permeability to fluid, not to protein. Cardiac dysfunction after the combined injury consisted of at least two phases. An initial depression was mostly related to hypovolemia due to burn injury. It was improved by a large amount of fluid resuscitation. The later phase, which was indicated to be a myocardial contractile dysfunction independent of the Starling equation, seemed to be correlated with smoke inhalation injury.  相似文献   

2.

Introduction  

Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of 200 ± 50 mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis.  相似文献   

3.
We hypothesized that the antibody neutralization of L-selectin would decrease the pulmonary abnormalities characteristic of burn and smoke inhalation injury. Three groups of sheep (n = 18) were prepared and randomized: the LAM-(1-3) group (n = 6) was injected intravenously with 1 mg/kg of leukocyte adhesion molecule (LAM)-(1-3) (mouse monoclonal antibody against L-selectin) 1 h after the injury, the control group (n = 6) was not injured or treated, and the nontreatment group (n = 6) was injured but not treated. All animals were mechanically ventilated during the 48-h experimental period. The ratio of arterial PO2 to inspired O2 fraction decreased in the LAM-(1-3) and nontreatment groups. Lung lymph flow and pulmonary microvascular permeability were elevated after injury. This elevation was significantly reduced when LAM-(1-3) was administered 1 h after injury. Nitrate/nitrite (NO(x)) amounts in plasma and lung lymph increased significantly after the combined injury. These changes were attenuated by posttreatment with LAM-(1-3). These results suggest that the changes in pulmonary transvascular fluid flux result from injury of lung endothelium by polymorphonuclear leukocytes. In conclusion, posttreatment with the antibody for L-selectin improved lung lymph flow and permeability index. L-selectin appears to be principally involved in the increased pulmonary transvascular fluid flux observed with burn/smoke insult. L-selectin may be a useful target in the treatment of acute lung injury after burn and smoke inhalation.  相似文献   

4.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

5.
During acute lung injury, nitric oxide (NO) exerts cytotoxic effects by reacting with superoxide radicals, yielding the reactive nitrogen species peroxynitrite (ONOO(-)). ONOO(-) exerts cytotoxic effects, among others, by nitrating/nitrosating proteins and lipids, by activating the nuclear repair enzyme poly(ADP-ribose) polymerase and inducing VEGF. Here we tested the effect of the ONOO(-) decomposition catalyst INO-4885 on the development of lung injury in chronically instrumented sheep with combined burn and smoke inhalation injury. The animals were randomized to a sham-injured group (n = 7), an injured control group [48 breaths of cotton smoke, 3rd-degree burn of 40% total body surface area (n = 7)], or an injured group treated with INO-4885 (n = 6). All sheep were mechanically ventilated and fluid-resuscitated according to the Parkland formula. The injury-related increases in the abundance of 3-nitrotyrosine, a marker of protein nitration by ONOO(-), were prevented by INO-4885, providing evidence for the neutralization of ONOO(-) action by the compound. Burn and smoke injury induced a significant drop in arterial Po(2)-to-inspired O(2) fraction ratio and significant increases in pulmonary shunt fraction, lung lymph flow, lung wet-to-dry weight ratio, and ventilatory pressures; all these changes were significantly attenuated by INO-4885 treatment. In addition, the increases in IL-8, VEGF, and poly(ADP-ribose) in lung tissue were significantly attenuated by the ONOO(-) decomposition catalyst. In conclusion, the current study suggests that ONOO(-) plays a crucial role in the pathogenesis of pulmonary microvascular hyperpermeability and pulmonary dysfunction following burn and smoke inhalation injury in sheep. Administration of an ONOO(-) decomposition catalyst may represent a potential treatment option for this injury.  相似文献   

6.
Whereas hypertonic saline-dextran (HSD, 7.5% NaCl in 6% D70) improves cardiac contractile function after burn trauma, the mechanisms of HSD-related cardioprotection remain unclear. We recently showed that cardiomyocytes secrete tumor necrosis factor-alpha (TNF-alpha), a response that was enhanced by burn trauma. This study addressed the question: does HSD modulate cardiac contraction/relaxation by altering cardiomyocyte TNF-alpha secretion? Wistar-Furth rats (325 g) were given a burn injury over 40% of the total body surface area and were then randomized to receive a bolus of either isotonic saline or HSD (4 ml/kg, n = 14 rats/group). Sham burn rats were given either isotonic saline or HSD (n = 14 rats/group) to provide appropriate controls for the two burn groups. Hearts were isolated 24 h postburn for either Langendorff perfusion (n = 8 hearts/group) or to prepare cardiomyocytes (n = 6 hearts/group). Myocytes were stimulated with lipopolysaccharide (LPS) (0, 10, 25, or 50 microg for 18 h) to measure cytokine secretion. Burn trauma increased myocyte TNF-alpha and interleukin-1 beta and -6 secretion, exacerbated cytokine response to LPS stimulus, and impaired cardiac contraction. HSD treatment of burns decreased cardiomyocyte cytokine secretion, decreased responsiveness to LPS challenge with regard to cytokine secretion, and improved ventricular function. These data suggest that HSD mediates cardioprotection after burn trauma, in part, by downregulating cardiomyocyte secretion of inflammatory cytokines.  相似文献   

7.
Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.  相似文献   

8.
Although tumor necrosis factor-alpha (TNF) is a key mediator in the pathophysiology of sepsis and septic shock, its role in lung microvascular injury is controversial. In isolated blood-perfused rabbit lungs, we studied the microvascular effects of human recombinant TNF by measuring the capillary filtration coefficient (Kf,c) as an index of microvascular leakiness and the arterial and venous resistances and occlusion pressures to define the microvascular pressure profile. At the end of the experiments, the lung wet-to-dry weight ratio (W/D) was determined as an index of edema. TNF increased the pulmonary venous resistance slightly but did not affect Kf,c or W/D. Furthermore, TNF at different doses failed to increase W/D less than or equal to 8 h after in vivo administration. Our data suggest that 1) the pulmonary microvascular response to TNF differs from the systemic response, which is characterized by arteriolar vasodilation, and 2) TNF is insufficient to cause lung edema, both in vivo and in vitro. Thus the development of lung microvascular injury may require the combined action of TNF and other mediators.  相似文献   

9.
Intestinal ischemia-reperfusion is associated with the generation of reactive oxygen metabolites as well as remote, oxidant-mediated lung injury. Oxidants elicit endothelial redox imbalance and loss of vascular integrity by disorganizing several junctional proteins that contribute to the maintenance and regulation of the endothelial barrier. To determine the specific effect of redox imbalance on pulmonary vascular barrier integrity, microvascular permeability was determined in lungs of animals subjected to chemically induced redox imbalance. The effect of redox imbalance on microvascular permeability and endothelial junctional integrity in cultured lung microvascular cells was also determined. Whole lung and cultured pulmonary endothelial cell permeability both increased significantly in response to chemical redox imbalance. Thiol depletion also resulted in decreased endothelial cadherin content and disruption of the endothelial barrier. These deleterious effects of intracellular redox imbalance were blocked by pretreatment with exogenous glutathione. The results of this study suggest that redox imbalance contributes to pulmonary microvascular dysfunction by altering the content and/or spatial distribution of endothelial junctional proteins.  相似文献   

10.

Background

Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established.

Methods

In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling).

Results

Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration (p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS (Nos2−/−) or NADPH oxidase (p47phox−/− or gp91phox−/−) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin.

Conclusions

Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.  相似文献   

11.
大鼠烫伤后24h血浆强啡肽A(Dyn A)的含量开始降低,120h仍未恢复到对照水平。烫伤后免疫功能也有明显的变化,表现为淋巴细胞转化功能降低,白细胞介素1,2(IL-1,IL-2)生成量减少。其变化过程与血浆Dyn A的变化基本一致。离体条件下,Dyn A与烫伤大鼠的脾淋巴细胞共同培养,可增强淋巴细胞转化及IL-2的生成。静脉注射Dyn A后,烫伤大鼠的淋巴细胞转化功能、IL-1和IL-2的生成都有不同程度的增加。本实验提示,血浆Dyn A水平的降低可能是烫伤大鼠免疫功能低下的原因之一。  相似文献   

12.
The classical tachykinin substance P (SP) has numerous potent neuroimmunomodulatory effects on all kinds of airway functions. Belonging to a class of neuromediators targeting not only residential cells but also inflammatory cells, studying SP provides important information on the bidirectional linkage between how neural function affects inflammatory events and, in turn, how inflammatory responses alter neural activity. Therefore, this study aimed to investigate the effect of local burn injury on inducing distant organ pulmonary SP release and its relevance to lung injury. Our results show that burn injury in male BALB/c mice subjected to 30% total body surface area full thickness burn augments significant production of SP, preprotachykinin-A gene expression, which encodes for SP, and biological activity of SP-neurokinin-1 receptor (NK1R) signaling. Furthermore, the enhanced SP-NK1R response correlates with exacerbated lung damage after burn as evidenced by increased microvascular permeability, edema, and neutrophil accumulation. The development of heightened inflammation and lung damage was observed along with increased proinflammatory IL-1beta, TNF-alpha, and IL-6 mRNA and protein production after injury in lung. Chemokines MIP-2 and MIP-1alpha were markedly increased, suggesting the active role of SP-induced chemoattractants production in trafficking inflammatory cells. More importantly, administration of L703606, a specific NK1R antagonist, 1 h before burn injury significantly disrupted the SP-NK1R signaling and reversed pulmonary inflammation and injury. The present findings show for the first time the role of SP in contributing to exaggerated pulmonary inflammatory damage after burn injury via activation of NK1R signaling.  相似文献   

13.
Cardiomyocyte sodium accumulation after burn injury precedes the development of myocardial contractile dysfunction. The present study examined the effects of burn injury on Na-K-ATPase activity in adult rat hearts after major burn injury and explored the hypothesis that burn-related changes in myocardial Na-K-ATPase activity are PKC dependent. A third-degree burn injury (or sham burn) was given over 40% total body surface area, and rats received lactated Ringer solution (4 ml.kg(-1).% burn(-1)). Subgroups of rats were killed 2, 4, or 24 h after burn (n = 6 rats/time period), hearts were homogenized, and Na-K-ATPase activity was determined from ouabain-sensitive phosphate generation from ATP by cardiac sarcolemmal vesicles. Additional groups of rats were studied at several times after burn to determine the time course of myocyte sodium loading and the time course of myocardial dysfunction. Additional groups of sham burn-injured and burn-injured rats were given calphostin, an inhibitor of PKC, and Na-K-ATPase activity, cell Na(+), and myocardial function were measured. Burn injury caused a progressive rise in cardiomyocyte Na(+), and myocardial Na-K-ATPase activity progressively decreased after burn, while PKC activity progressively rose. Administration of calphostin to inhibit PKC activity prevented both the burn-related decrease in myocardial Na-K-ATPase and the rise in intracellular Na(+) and improved postburn myocardial contractile performance. We conclude that burn-related inhibition of Na-K-ATPase likely contributes to the cardiomyocyte accumulation of intracellular Na(+). Since intracellular Na(+) is one determinant of electrical-mechanical recovery after insults such as burn injury, burn-related inhibition of Na-K-ATPase may be critical in postburn recovery of myocardial contractile function.  相似文献   

14.
Oxygen free radicals have been implicated in mediating various pathological processes including burn-induced organ damage. This study was designed to determine the possible protective effect of aqueous garlic extract against oxidative organ damage distant from the original burn wound. Under ether anaesthesia, rats were subjected to severe skin scald injury covering 30% of total body surface area. Rats were decapitated either 2 h or 24 h after burn injury. Aqueous garlic extract (1 ml/kg) was administered i.p. immediately after burn injury. In the 24-h burn group injection was repeated once more (at 12 hour) following the burn injury. Liver, intestine and lung tissues were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and protein oxidation (PO). Burn injury caused a significant decrease in GSH level, and significant increases in MDA and PO levels, and MPO activity at post-burn 2 and 24 hours. Since garlic extract reversed these oxidant responses it seems likely that garlic extract protects tissues against oxidative damage.  相似文献   

15.
Burn injury induces immune dysfunction and alters numerous physiological parameters. While clinical studies indicate that burn injury size profoundly impacts patient immune status, only limited experimental studies have systematically addressed its impact on immune functional parameters. In the present study, mice were subjected to burn injuries of varying sizes and splenic immune cells (splenocytes and macrophages) were isolated 7 days thereafter. Burn injury suppressed splenic T-cell proliferation in an injury size-dependent manner that correlated with the release of the immunosuppressive mediators PGE(2) and nitric oxide. In addition, a shift towards an immunosuppressive Th-2 cytokine profile and a hyperactive macrophage phenotype (increased release of inflammatory mediators) was observed post-injury, however, this effect was in part independent of burn size. Thus, unlike patient survival data, burn injury-induced changes in immune function do not necessarily correlate with the size of the injury.  相似文献   

16.
Major cutaneous burns result in not only localized tissue damage but broad systemic inflammation causing organ system damage distal to the burn site. It is well recognized that many problems result from the release of inflammatory mediators that target vascular endothelial cells, causing organ dysfunction. The pulmonary microvessels are particularly susceptible to functional abnormalities as a direct consequence of exposure to burn-induced inflammatory mediators. Traditional therapeutic intervention is quite often ineffective in treating burn patients suffering from systemic problems. A possible explanation for this ineffectiveness may be that because so many mediators are released, supposedly activating numerous signaling cascades that interact with each other, targeting of upstream factors in these cascades on an individual basis becomes futile. Therefore, if an end-point effector responsible for endothelial dysfunction following burn injury could be identified, it may present a target for intervention. In this study, we identified phosphorylation of myosin light chain (MLC) as a required element of burn plasma-induced hyperpermeability across rat lung microvascular endothelial cell monolayers. In addition, pharmacological inhibition of myosin light chain kinase (MLCK) and Rho kinase as well as transfection of MLCK-inhibiting peptide blocked actin stress fiber formation and MLC phosphorylation in response to burn plasma. The results suggest that blocking MLC phosphorylation may provide therapeutic intervention in burn patients with the goal of alleviating systemic inflammation-induced endothelial dysfunction.  相似文献   

17.
C5a-blockade improves burn-induced cardiac dysfunction   总被引:4,自引:0,他引:4  
We previously reported that generation of the anaphylatoxin C5a is linked to the development of cardiac dysfunction in sepsis due to C5a interaction with its receptor (C5aR) on cardiomyocytes. Burn injury involves inflammatory mechanisms that can lead to C5a generation as well. In this study, we investigated the effects of C5a blockade on burn-induced cardiac dysfunction. Using a standardized rat model of full thickness scald injury, left ventricular pressures were recorded in vivo followed by in vitro assessment of sarcomere contraction of single cardiomyocytes. Left ventricular pressures in vivo and cardiomyocyte sarcomere contractility in vitro were significantly reduced following burn injury. In the presence of anti-C5a Ab, these defects were greatly attenuated 1, 6, and 12 h after burn injury and completely abolished 24 h after burn. In vitro incubation of cardiomyocytes with bacterial LPS accentuated the impaired contractility, which was partially prevented in cardiomyocytes from burned rats that had received an anti-C5a Ab. Based on Western blot analyses, real-time PCR, and immunostaining of left ventricular heart tissue, there was a significant increase in cardiomyocyte expression of C5aR after burn injury. In conclusion, an in vivo blockade of C5a attenuates burn-induced cardiac dysfunction. Further deterioration of contractility due to the exposure of cardiomyocytes to LPS was partially prevented by C5a-blockade. These results suggest a linkage between C5a and burn-induced cardiac dysfunction and a possible contribution of LPS to these events.  相似文献   

18.
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.  相似文献   

19.
Chen C  Wang P  Su Q  Wang S  Wang F 《PloS one》2012,7(4):e34946

Background

Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction.

Methodology/Principal Findings

Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression.

Conclusions/Significance

The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.  相似文献   

20.
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号