首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have used filter-grown Madin-Darby canine kidney (MDCK) cells to explore the mechanism by which influenza virus facilitates secondary virus infection. Vesicular stomatitis virus (VSV) and Semliki Forest virus (SFV) infect only through the basolateral surface of these polarized epithelial cells and not through the apical surface. Prior infection with influenza virus rendered the cell susceptible to infection by VSV or SFV through either surface. The presence of both a permissive and a restrictive surface for virus entry in the same cell allowed us to determine how the influenza infection enhanced the subsequent infection of a second virus. Biochemical and morphological evidence showed that influenza haemagglutinin on the apical surface serves as a receptor for the superinfecting virus by binding to its sialic acid-bearing envelope proteins. Influenza virus also facilitates secondary virus infection in non-epithelial cells; baby hamster kidney cells (BHK-21), which are normally resistant to infection by the coronavirus (mouse hepatitis virus MHV-A59), could be infected via the haemagglutinin-sialic acid interaction. Facilitation of secondary virus infection requires only the sialic acid-binding properties of the haemagglutinin since the uncleaved haemagglutinin could also mediate virus entry.  相似文献   

3.
We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ("sterilizing" immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 10(6) cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 10(6) cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity.  相似文献   

4.
Sindbis virus (SINV) is an alphavirus that causes infection of neurons and encephalomyelitis in adult immunocompetent mice. Recovery can occur without apparent neurological damage. To better define the factors facilitating noncytolytic clearance of SINV in different regions of the central nervous system (CNS) and the roles of innate and adaptive immune responses at different times during infection, we have characterized SINV infection and clearance in the brain, brain stem, and spinal cords of severe combined immunodeficiency (SCID) and C57BL/6 (wild-type [WT]) mice and mice deficient in beta interferon (IFN-beta) (BKO), antibody (muMT), IFN-gamma (GKO), IFN-gamma receptor (GRKO), and both antibody and IFN-gamma (muMT/GKO). WT mice cleared infectious virus by day 8, while SCID mice had persistent virus replication at all sites. For 3 days after infection, BKO mice had higher titers at all sites than WT mice, despite similar IFN-alpha production, but cleared virus similarly. GKO and GRKO mice cleared infectious virus from all sites by days 8 to 10 and, like WT mice, displayed transient reactivation at 12 to 22 days. muMT mice did not clear virus from the brain, and clearance from the brain stem and lumbar spinal cord was delayed, followed by reactivation. Eighty-one days after infection, muMT/GKO mice had not cleared virus from any site, but titers were lower than for SCID mice. These studies show that IFN-beta is independently important for early control of CNS virus replication, that antiviral antibody is critical for clearance from the brain, and that both antibody and IFN-gamma contribute to prevention of reactivation after initial clearance.  相似文献   

5.
The course of infection upon virus entry into the cell depends not only on the biological characteristics of the cells and of the virus itself, but also on the intensity of the cell infection by the virus, i.e., on the multiplicity of infection. The purpose of our work was to perform a comparative study of the responses of two human cell lines, the lung carcinoma cell line A-549 and the endothelium cell line ECV-304, to the infection with the influenza virus A at different multiplicities of infection. At the first passage, both cell lines responded by enhancement of proliferation and apoptosis induction only to the low doses of influenza virus (ID 1–10). In A-49 cells, the stimulatory effect of the low virus doses was observed 1–2 days earlier than in ECV-304 cells. Enhanced proliferation was observed in both cell lines from the second to the fourth passages, when cells were infected with higher virus doses (ID 100 and 1000). In addition, the response of the A-549 cells to low doses of the H3N2 strain of the influenza virus A depended on the virus propagation conditions—namely, no enhancement of cell proliferation was observed in response to the infection with the virus propagating in chicken embryonated eggs, in contrast to infection with the virus that propagated in cell culture. Immunocytochemistry of A-549 cells has demonstrated that, on the third day after infection, there could be observed a change (in the dose-dependent manner) in the intracellular localization of p53 and cyclin A, proteins involved in the cell cycle progression. At the low virus dose, cyclin A was predominantly detected in the nuclei (63%), while at the high virus dose it was p53 (54%), which was predominantly detected in this cellular compartment, this observation confirming that stimulation of cell proliferation in the case of very low multiplicity of infection and cell division arrest takes place in the case of high multiplicity of influenza virus infection. The study of the influenza virus A reproduction in A-549 and ECV-304 cells using a whole number of virology techniques showed low sensitivity of these cells to the influenza virus, which manifested in the gradual decrease in the viral RNA expression and the impairment of mature viral particles assembly during several passages. Therefore, the decrease in the multiplicity of infection is associated in the A-549 and ECV-304 cells with impairment of production of mature virus particles or certain virus protein synthesis, which is accompanied by cell proliferation enhancement and apoptosis induction. As a result of the comparative study of the two cell lines (A-549 and ECV-304) upon infection with different doses of influenza virus A, we have revealed common principles and specific features indicating the effects of the biological properties of the viruses and cells, as well as of the multiplicity of infection on the course of virus infection.  相似文献   

6.
7.
Effects of virus inhibitors on the infection of tobacco protoplasts with tobacco mosaic virus Yeast extract inhibits the infection of Nicotiana glutinosa plants with tobacco mosaic virus (TMV), whereas in N. sandérae yeast extract is not effective. This phenomena was compared with the effect of yeast extract on protoplasts, and on the infection of protoplasts of both tobacco species with TMV. Additionally, skim milk and ribonuclease were included in the experiments as further inhibitors of early stages of virus infection. It was examined whether these inhibitors damage non-inoculated protoplasts (a), and whether they affect virus infections in protoplasts as they do in cells of intact plants (b). To investigate protoplast damage by the inhibitors, conductivity measurements of protoplast suspensions containing inhibitors, and the ability of protoplasts for cell wall regeneration after treatment with the inhibitors, were used. Inhibitor concentrations which prevent virus infections in plants did not damage the protoplasts. The inhibitor effect on the course of infection was investigated by protoplast treatments before, during and after inoculation with TMV, and by addition of the substances to the culture medium. Measurements of virus content in protoplasts after cultivation revealed different results for the three inhibitors, however, there was no difference in the response of protoplasts from the two tobacco species to yeast extract. It is concluded that there are principal differences between the inhibition of plant and protoplast infections. Therefore, it is unlikely that protoplasts are a useful system for the mode of action studies on inhibitors of early stages of virus infection in plants.  相似文献   

8.
OBJECTIVE--To investigate the possible interference with acute hepatitis B virus infection by co-infection with hepatitis C virus. DESIGN--Analysis of stored sera collected for transfusion transmitted viruses study in 1970s. SETTING--Four major medical centres in the United States. PATIENTS--12 recipients of blood infected with hepatitis B virus. MAIN OUTCOME MEASURES--In 1970s, presence of antibodies in hepatitis B virus and raised serum alanine aminotransferase concentration; detection of antibodies to hepatitis C virus with new enzyme linked immunoassays. RESULTS--Five of the 12 patients were coinfected with hepatitis C virus. Hepatitis B surface antigen was first detected at day 59 in patients infected with hepatitis B virus alone and at day 97 in those coinfected with hepatitis C virus (p = 0.01); median durations of antigenaemia were 83 and 21 days respectively (p = 0.05), and the antigen concentration was lower in the coinfected patients. Alanine aminotransferase patterns were uniphasic when hepatitis B virus infection occurred alone (range 479-2465 IU/l) and biphasic in patients with combined acute infection (no value > 380 IU/l; p = 0.0025). Four coinfected recipients developed chronic hepatitis C virus infection. The fifth patient was followed for only four months. CONCLUSIONS--Acute coinfection with hepatitis C virus and hepatitis B virus inhibits hepatitis B virus infection in humans, and onset of hepatitis B may reduce the severity of hepatitis C virus infection but not frequency of chronicity. Alanine aminotransferase concentration showed a biphasic pattern in dual infection.  相似文献   

9.
To address the initiation of virus infection in the respiratory tract, we established two culture systems for differentiated bovine airway epithelial cells (BAEC). Filter-grown BAEC differentiated under air-liquid interface (ALI) conditions to generate a pseudo-stratified mucociliary epithelium. Alternatively, precision-cut lung slices (PCLS) from the bovine airways were generated that retained the original composition and distribution of differentiated epithelial cells. With both systems, epithelial cells were readily infected by bovine parainfluenza virus 3 (BPIV3). Ciliated cells were the most prominent cell type affected by BPIV3. Surprisingly, differentiated BAEC were resistant to infection by bovine respiratory syncytial virus (BRSV), when the virus was applied at the same multiplicity of infection that was sufficient for infection by BPIV3. In the case of PCLS, infection by BRSV was observed in cells located in lower cell layers but not in epithelial cells facing the lumen of the airways. The identity of the infected cells could not be determined because of a lack of specific antibodies. Increasing the virus titer 30-fold resulted in infection of the ALI cultures of BAEC, whereas in PCLS the ciliated epithelium was still refractory to infection by BRSV. These results indicate that differentiated BAEC are readily infected by BPIV3 but rather resistant to infection by BRSV. Disease caused by BRSV may require that calves encounter environmental stimuli that render BAEC susceptible to infection.  相似文献   

10.
Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.  相似文献   

11.
Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated with poly(I:C) or alpha interferon, suggesting a direct effect of virus infection. To determine the mechanism(s) involved in the induction of chemokine production by DEN2V, individual dengue virus genes were cloned into plasmids and expressed in HEK293 cells. Transfection of a plasmid expressing NS5 or a dengue virus replicon induced IL-8 gene expression and secretion. RANTES expression was not induced under these conditions, however. Reporter assays showed that IL-8 induction by NS5 was principally through CAAT/enhancer binding protein, whereas DEN2V infection also induced NF-kappaB. These results indicate a role for the dengue virus NS5 protein in the induction of IL-8 by DEN2V infection. Recruitment and activation of potential target cells to sites of DEN2V replication by virus-induced chemokine production may contribute to viral replication as well as to the inflammatory components of dengue virus disease.  相似文献   

12.
Inhibitors of human immunodeficiency virus type 1 attachment (CD4-immunoglobulin G subclass 2), CCR5 usage (PRO 140), and fusion (T-20) were tested on diverse primary cell types that represent the major targets both for infection in vivo and for the inhibition of trans infection of target cells by virus bound to dendritic cells. Although minor cell-type-dependent differences in potency were observed, each inhibitor was active on each cell type and trans infection was similarly vulnerable to inhibition at each stage of the fusion cascade.  相似文献   

13.
Macrophages comprise the major population of cells infiltrating pancreatic islets during the early stages of infection in DBA/2 mice by the D variant of encephalomyocarditis virus (EMC-D virus). Inactivation of macrophages prior to viral infection almost completely prevents EMC-D virus-induced diabetes. This investigation was initiated to determine whether a tyrosine kinase signalling pathway might be involved in the activation of macrophages by EMC-D virus infection and whether tyrosine kinase inhibitors might, therefore, abrogate EMC-D virus-induced diabetes in vivo. When isolated macrophages were infected with EMC-D virus, inducible nitric oxide synthase mRNA was expressed and nitric oxide was subsequently produced. Treatment of macrophages with the tyrosine kinase inhibitor tyrphostin AG126, but not tyrphostin AG556, prior to EMC-D virus infection blocked the production of nitric oxide. The infection of macrophages with EMC-D virus also resulted in the activation of the mitogen-activated protein kinases (MAPKs) p42(MAPK/ERK2)/p44(MAPK/ERK1), p38(MAPK), and p46/p54(JNK). In accord with the greater potency of AG126 than of AG556 in blocking EMC-D virus-mediated macrophage activation, the incidence of diabetes in EMC-D virus-infected mice treated with AG126 (25%) was much lower than that in AG556-treated (75%) or vehicle-treated (88%) control mice. We conclude that EMC-D virus-induced activation of macrophages resulting in macrophage-mediated beta-cell destruction can be prevented by the inhibition of a tyrosine kinase signalling pathway involved in macrophage activation.  相似文献   

14.
A total of 2,283 serum samples were collected from healthy subjects in three islands of the Yaeyama district of Okinawa, Japan. These sera were tested for the presence of hepatitis B surface antigen (HBsAg), for antibody to hepatitis B core antigen (anti-HBc), and for antibody to adult T-cell leukemia-associated antigen (anti-ATLA). Correlation between hepatitis B virus infection and adult T-cell leukemia virus (ATLV) infection was determined by using the prevalence rates for three virus markers. Overall prevalence of HBsAg, anti-HBc and anti-ATLA was 6.5%, 57.4%, and 17.9%, respectively. Age-specific prevalence of anti-HBc and anti-ATLA increased with age, but that of HBsAg did not. Sex-specific prevalence of HBsAg was significantly higher in males than in females, but that of anti-ATLA was significantly higher in females than in males. Statistical analysis revealed that prevalence of anti-ATLA was significantly higher in HBsAg-positive persons and HBsAg-negative/anti-HBc-positive persons than in those negative for HBsAg and anti-HBc. These data suggest that hepatitis B virus-infected persons have a significantly higher chance of adult T-cell leukemia virus infection than those without hepatitis B virus infection in the area studied.  相似文献   

15.
D Ron  J Tal 《Journal of virology》1985,55(2):424-430
Infection of L-cells with minute virus of mice (i), a lymphotropic strain of minute virus of mice, resulted in the emergence of host range mutant viruses capable of a lytic infection that destroys the initially restrictive parental cells. Despite that, the culture was not lysed completely; instead, a persistent infection resulted which lasted at least 150 days. Throughout the persistent infection, extensive changes occurred in both the tissue tropism of the progeny virus and in the phenotypic properties of the cells. Mutant cells were selected which were increasingly restrictive to the replication of the resident virus, but concomitant changes in the virus enabled it to replicate in a subpopulation of the restrictive cells. The persistent infection could be reconstructed by infection of mutant cells with mutant virus; in contrast, neither infection of parental cells with mutant virus nor infection of mutant cells with parental virus led to persistence. On the basis of these results, we suggest that virus-cell coevolution provides the primary mechanism for the initiation and the maintenance of the persistent infection.  相似文献   

16.
Langerhans cells (LCs) are antigen-presenting cells in the skin that play sentinel roles in host immune defense by secreting proinflammatory molecules and activating T cells. Here we studied the interaction of vaccinia virus with XS52 cells, a murine epidermis-derived dendritic cell line that serves as a surrogate model for LCs. We found that vaccinia virus productively infects XS52 cells, yet this infection displays an atypical response to anti-poxvirus agents. Whereas adenosine N1-oxide blocked virus production and viral protein synthesis during a synchronous infection, cytosine arabinoside had no effect at concentrations sufficient to prevent virus replication in BSC40 monkey kidney cells. Vaccinia virus infection of XS52 cells not only failed to elicit the production of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-10, IL-12 p40, alpha interferon (IFN-alpha), and IFN-gamma, it actively inhibited the production of proinflammatory cytokines TNF-alpha and IL-6 by XS52 cells in response to exogenous lipopolysaccharide (LPS) or poly(I:C). Infection with a vaccinia virus mutant lacking the E3L gene resulted in TNF-alpha secretion in the absence of applied stimuli. Infection of XS52 cells or BSC40 cells with the DeltaE3L virus, but not wild-type vaccinia virus, triggered proteolytic decay of IkappaBalpha. These results suggest a novel role for the E3L protein as an antagonist of the NF-kappaB signaling pathway. DeltaE3L-infected XS52 cells secreted higher levels of TNF-alpha and IL-6 in response to LPS and poly(I:C) than did cells infected with the wild-type virus. XS52 cells were productively infected by a vaccinia virus mutant lacking the K1L gene. DeltaK1L-infected cells secreted higher levels of TNF-alpha and IL-6 in response to LPS than wild-type virus-infected cells. Vaccinia virus infection of primary LCs harvested from mouse epidermis was nonpermissive, although a viral reporter protein was expressed in the infected LCs. Vaccinia virus infection of primary LCs strongly inhibited their capacity for antigen-specific activation of T cells. Our results highlight suppression of the skin immune response as a feature of orthopoxvirus infection.  相似文献   

17.
成簇的规律间隔的短回文重复序列及其相关蛋白9〔clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9),CRISPR/Cas9〕基因编辑技术的发现源于真细菌和古细菌中CRISPR/Cas系统介导的适应性免疫机制研究。该技术利用特异性向导RNA识别靶点基因,引导核酸内切酶Cas9对其切割,并通过同源重组或非同源末端连接完成对目的DNA的编辑。某些病毒感染机体后,可将其基因组整合到宿主细胞基因组中或潜伏于组织中而无法被彻底清除,从而引起持续性感染。本文参考2013年以来CRISPR/Cas9基因组编辑技术的最新相关研究报道,重点综述其在人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)、人乳头瘤病毒(human papillomavirus,HPV )、乙型肝炎病毒(hepatitis B virus, HBV)、 Epstein-Barr病毒(Epstein-Barr virus,EBV)等致瘤病毒感染相关疾病研究中的应用,并概括其作用于这些病毒的有效靶点。  相似文献   

18.
The influenza A virus is one of the main causes of respiratory infection. Although influenza virus infection alone can result in pneumonia, secondary bacterial infection combined with the virus is the major cause of morbidity and mortality. Interestingly, while influenza infection increases susceptibility to some bacteria, including Streptococcus pneumoniae, Staphylococcus aureus (S. aureus), and Haemophilus influenzae, other bacteria such as Escherichia coli (E. coli) and Klebsiella pneumoniae are not associated with influenza infection. The reason for this discrepancy is not known. In this study, it was found that prior influenza virus infection inhibits murine alveolar macrophage phagocytosis of S. aureus but not of E. coli. Here, the mechanism for this inhibition is elucidated: prior influenza virus infection strongly increases interferon gamma (IFN-γ) production. Furthermore, it was shown that IFN-γ differentially affects alveolar macrophage phagocytosis of S. aureus and E. coli. The findings of the present study explain how influenza virus infection increases susceptibility to some bacteria, such as S. aureus, but not others, and provides evidence that IFN-γ might be a promising target for protecting the human population from secondary bacterial infection by influenza.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号