首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cox11 is a protein essential for respiratory growth and has been implicated in the assembly of the Cu(B) site of cytochrome c oxidase. In the present study, we demonstrate that Cox11 is a copper-binding protein. The soluble C-terminal domain of Cox11 forms a dimer that coordinates one Cu(I) per monomer via three thiolate ligands. The two Cu(I) ions in the dimer exist in a binuclear cluster and appear to be ligated by three conserved Cys residues. Mutation of any of these Cys residues reduces Cu(I) binding and confers respiratory incompetence. Cytochrome c oxidase activity is reduced in these mutants. Thus, the residues important for Cu(I) binding correlate with in vivo function, suggesting that Cu(I) binding is important in Cox11 function.  相似文献   

2.
Cox17 is a key mitochondrial copper chaperone involved in the assembly of cytochrome c oxidase (COX). The NMR solution structure of the oxidized apoCox17 isoform consists of a coiled-coil conformation stabilized by two disulfide bonds involving Cys(26)/Cys(57) and Cys(36)/Cys(47). This appears to be a conserved tertiary fold of a class of proteins, localized within the mitochondrial intermembrane space, that contain a twin Cys-x(9)-Cys sequence motif. An isomerization of one disulfide bond from Cys(26)/Cys(57) to Cys(24)/Cys(57) is required prior to Cu(I) binding to form the Cu(1)Cox17 complex. Upon further oxidation of the apo-protein, a form with three disulfide bonds is obtained. The reduction of all disulfide bonds provides a molten globule form that can convert to an additional conformer capable of binding up to four Cu(I) ions in a polycopper cluster. This form of the protein is oligomeric. These properties are framed within a complete model of mitochondrial import and COX assembly.  相似文献   

3.
Cox17 is the candidate copper metallochaperone for delivery of copper ions to the mitochondrion for assembly of cytochrome c oxidase. Cox17 purified as a recombinant molecule lacking any purification tag binds three Cu(I) ions per monomer in a polycopper cluster as shown by X-ray absorption spectroscopy. The CuCox17 complex exists in a dimer/tetramer equilibrium with a 20 microM k(d). The spectroscopic data do not discern whether the dimeric complex forms a single hexanuclear Cu(I) cluster or two separate trinuclear Cu(I) clusters. The Cu(I) cluster(s) exhibit(s) predominantly trigonal Cu(I) coordination. The cluster(s) in Cox17 resemble(s) the polycopper clusters in Ace1 and the Cup1 metallothionein in being pH-stable and luminescent. The physical properties of the CuCox17 complex purified as an untagged molecule differ from those reported previously for a GST-Cox17 fusion protein. The CuCox17 cluster is distinct from the polycopper cluster in Cup1 in being labile to ligand exchange. CuCox17 localized within the intermitochondrial membrane space appears to be predominantly tetrameric, whereas the cytosolic CuCox17 is primarily a dimeric species. Cys-->Ser substitutions at Cys23, Cys24, or Cys26 abolish the Cox17 function and prevent tetramerization, although Cu(I) binding is largely unaffected. Thus, the oligomeric state of Cox17 may be important to its physiological function.  相似文献   

4.
Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.  相似文献   

5.
Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX(9)C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.  相似文献   

6.
Copper chaperone for cytochrome c oxidase (Cox17) is a 7 kDa copper-binding protein, which facilitates incorporation of copper ions into Cu(A) site of cytochrome c oxidase. Cox17 contains six conserved Cys residues and occurs in three different oxidative states, which display different metal-binding properties and stability. In the present study, we have elaborated technologies for production of partially oxidized human recombinant Cox17 in a bacterial expression system and purification of fully oxidized Cox17. For this purpose we used Escherichia coli Origami strain, which is deficient in thioredoxin and thioredoxin reductase systems and allows formation of disulfide bonds in cytoplasmic proteins. Fully oxidized Cox17 was purified by a simplified two-step procedure including gel filtration and cation exchange chromatography. By using mass spectrometry we demonstrated that application of 2-mercaptoethanol (2-ME) during purification leads to formation of its mixed disulfide adducts with Cox17. Moreover, partially reduced Cox17 can form mixed disulfide adducts also with the cellular reducing agent glutathione, which abolishes copper-binding ability of partially reduced Cox17.  相似文献   

7.
Human Cox17 is a key mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy transducing respiratory chain. A structural and dynamical characterization of human Cox17 in its various functional metallated and redox states is presented here. The NMR solution structure of the partially oxidized Cox17 (Cox17(2S-S)) consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds involving Cys(25)-Cys(54) and Cys(35)-Cys(44), preceded by a flexible and completely unstructured N-terminal tail. In human Cu(I)Cox17(2S-S) the copper(I) ion is coordinated by the sulfurs of Cys(22) and Cys(23), and this is the first example of a Cys-Cys binding motif in copper proteins. Copper(I) binding as well as the formation of a third disulfide involving Cys(22) and Cys(23) cause structural and dynamical changes only restricted to the metal-binding region. Redox properties of the disulfides of human Cox17, here investigated, strongly support the current hypothesis that the unstructured fully reduced Cox17 protein is present in the cytoplasm and enters the intermembrane space (IMS) where is then oxidized by Mia40 to Cox17(2S-S), thus becoming partially structured and trapped into the IMS. Cox17(2S-S) is the functional species in the IMS, it can bind only one copper(I) ion and is then ready to enter the pathway of copper delivery to cytochrome c oxidase. The copper(I) form of Cox17(2S-S) has features specific for copper chaperones.  相似文献   

8.
Sco1 is implicated in the copper metallation of the Cu(A) site in Cox2 of cytochrome oxidase. The structure of Sco1 in the metallated and apo-conformers revealed structural dynamics primarily in an exposed region designated loop 8. The structural dynamics of loop 8 in Sco1 suggests it may be an interface for interactions with Cox17, the Cu(I) donor and/or Cox2. A series of conserved residues in the sequence motif (217)KKYRVYF(223) on the leading edge of this loop are shown presently to be important for yeast Sco1 function. Cells harboring Y219D, R220D, V221D, and Y222D mutant Sco1 proteins failed to restore respiratory growth or cytochrome oxidase activity in sco1Delta cells. The mutant proteins are stably expressed and are competent to bind Cu(I) and Cu(II) normally. Specific Cu(I) transfer from Cox17 to the mutant apo-Sco1 proteins proceeds normally. In contrast, using two in vivo assays that permit monitoring of the transient Sco1-Cox2 interaction, the mutant Sco1 molecules appear compromised in a function with Cox2. The mutants failed to suppress the respiratory defect of cox17-1 cells unlike wild-type SCO1. In addition, the mutants failed to suppress the hydrogen peroxide sensitivity of sco1Delta cells. These studies implicate different surfaces on Sco1 for interaction or function with Cox17 and Cox2.  相似文献   

9.
Deletion of reading frame YHR116W of the Saccharomyces cerevisiae nuclear genome elicits a respiratory deficiency. The encoded product, here named Cox23p, is shown to be required for the expression of cytochrome oxidase. Cox23p is homologous to Cox17p, a water-soluble copper protein previously implicated in the maturation of the Cu(A) center of cytochrome oxidase. The respiratory defect of a cox23 null mutant is rescued by high concentrations of copper in the medium but only when the mutant harbors COX17 on a high copy plasmid. Overexpression of Cox17p by itself is not a sufficient condition to rescue the mutant phenotype. Cox23p, like Cox17p, is detected in the intermembrane space of mitochondria and in the postmitochondrial supernatant fraction, the latter consisting predominantly of cytosolic proteins. Because Cox23p and Cox17p are not part of a complex, the requirement of both for cytochrome oxidase assembly suggests that they function in a common pathway with Cox17p acting downstream of Cox23p.  相似文献   

10.
Cox17, a copper chaperone for cytochrome-c oxidase, is an essential and highly conserved protein in eukaryotic organisms. Yeast and mammalian Cox17 share six conserved cysteine residues, which are involved in complex redox reactions as well as in metal binding and transfer. Mammalian Cox17 exists in three oxidative states, each characterized by distinct metal-binding properties: fully reduced mammalian Cox17(0S-S) binds co-operatively to four Cu+; Cox17(2S-S), with two disulfide bridges, binds to one of either Cu+ or Zn2+; and Cox17(3S-S), with three disulfide bridges, does not bind to any metal ions. The E(m) (midpoint redox potential) values for two redox couples of Cox17, Cox17(3S-S)<-->Cox17(2S-S) (E(m1)) and Cox17(2S-S)<-->Cox17(0S-S) (E(m2)), were determined to be -197 mV and -340 mV respectively. The data indicate that an equilibrium exists in the cytosol between Cox17(0S-S) and Cox17(2S-S), which is slightly shifted towards Cox17(0S-S). In the IMS (mitochondrial intermembrane space), the equilibrium is shifted towards Cox17(2S-S), enabling retention of Cox17(2S-S) in the IMS and leading to the formation of a biologically competent form of the Cox17 protein, Cox17(2S-S), capable of copper transfer to the copper chaperone Sco1. XAS (X-ray absorption spectroscopy) determined that Cu4Cox17 contains a Cu4S6-type copper-thiolate cluster, which may provide safe storage of an excess of copper ions.  相似文献   

11.
Sco1 is a metallochaperone that is required for copper delivery to the Cu(A) site in the CoxII subunit of cytochrome c oxidase. The only known missense mutation in human Sco1, a P174L substitution in the copper-binding domain, is associated with a fatal neonatal hepatopathy; however, the molecular basis for dysfunction of the protein is unknown. Immortalized fibroblasts from a SCO1 patient show a severe deficiency in cytochrome c oxidase activity that was partially rescued by overexpression of P174L Sco1. The mutant protein retained the ability to bind Cu(I) and Cu(II) normally when expressed in bacteria, but Cox17-mediated copper transfer was severely compromised both in vitro and in a yeast cytoplasmic assay. The corresponding P153L substitution in yeast Sco1 was impaired in suppressing the phenotype of cells harboring the weakly functional C57Y allele of Cox17; however, it was functional in sco1delta yeast when the wild-type COX17 gene was present. Pulse-chase labeling of mitochondrial translation products in SCO1 patient fibroblasts showed no change in the rate of CoxII translation, but there was a specific and rapid turnover of CoxII protein in the chase. These data indicate that the P174L mutation attenuates a transient interaction with Cox17 that is necessary for copper transfer. They further suggest that defective Cox17-mediated copper metallation of Sco1, as well as the subsequent failure of Cu(A) site maturation, is the basis for the inefficient assembly of the cytochrome c oxidase complex in SCO1 patients.  相似文献   

12.
The assembly of the copper sites in cytochrome c oxidase involves a series of accessory proteins, including Cox11, Cox17, and Sco1. The two mitochondrial inner membrane proteins Cox11 and Sco1 are thought to be copper donors to the Cu(B) and Cu(A) sites of cytochrome oxidase, respectively, whereas Cox17 is believed to be the copper donor to Sco1 within the intermembrane space. In this report we show Cox17 is a specific copper donor to both Sco1 and Cox11. Using in vitro studies with purified proteins, we demonstrate direct copper transfer from CuCox17 to Sco1 or Cox11. The transfer is specific because no transfer occurs to heterologous proteins, including bovine serum albumin and carbonic anhydrase. In addition, a C57Y mutant of Cox17 fails to transfer copper to Sco1 but is competent for copper transfer to Cox11. The in vitro transfer studies were corroborated by a yeast cytoplasm expression system. Soluble domains of Sco1 and Cox11, lacking the mitochondrial targeting sequence and transmembrane domains, were expressed in the yeast cytoplasm. Metallation of these domains was strictly dependent on the co-expression of Cox17. Thus, Cox17 represents a novel copper chaperone that delivers copper to two proteins.  相似文献   

13.
14.
AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17   总被引:7,自引:0,他引:7       下载免费PDF全文
We have identified a new plant gene, AtCOX17, encoding a protein that shares sequence similarity to COX17, a Cu-binding protein from yeast (Saccharomyces cerevisiae) and vertebrates that mediates the delivery of Cu to the mitochondria for the assembly of a functional cytochrome oxidase complex. The newly characterized Arabidopsis protein has six Cys residues at positions corresponding to those known to coordinate Cu binding in the yeast homolog. Moreover, we show that the Arabidopsis COX17 cDNA complements a COX17 mutant of yeast restoring the respiratory deficiency associated with that mutation. These two lines of evidence indicate that the plant protein identified here is a functional equivalent of yeast COX17 and might serve as a Cu delivery protein for the plant mitochondria. COX17 was identified by investigating the hypersensitive response-like necrotic response provoked in tobacco (Nicotiana tabacum) leaves after harpin inoculation. AtCOX17 expression was activated by high concentrations of Cu, bacterial inoculation, salicylic acid treatment, and treatments that generated NO and hydrogen peroxide. All of the conditions inducing COX17 are known to inhibit mitochondrial respiration and to produce an increase of reactive oxygen species, suggesting that gene induction occurs in response to stress situations that interfere with mitochondrial function.  相似文献   

15.
COX19, a nuclear gene of Saccharomyces cerevisiae, was cloned by transformation of a respiratory-deficient mutant from complementation group G188 of a pet mutant collection. The gene codes for an 11-kDa protein (Cox19p) required for expression of cytochrome oxidase. Because cox19 mutants are able to synthesize the mitochondrial and nuclear gene products of cytochrome oxidase, Cox19p probably functions post-translationally during assembly of the enzyme. Cox19p is present in the cytoplasm and mitochondria, where it exists as a soluble intermembrane protein. This dual location is similar to what was previously reported for Cox17p, a low molecular weight copper protein thought to be required for maturation of the CuA center of subunit 2 of cytochrome oxidase. The similarity in their subcellular distribution, combined with the presence of four cysteines in Cox19p that align with a subset of the cysteines in Cox17p, suggests that like the latter, Cox19p may function in metal transport to mitochondria.  相似文献   

16.
Assembly of the core subunits of the aa(3)-type cytochrome c oxidase in mitochondria and aerobic bacteria such as Rhodobacter sphaeroides requires the association of three subunits and the formation of five to seven metal centers. Several assembly proteins are required for the late stages of oxidase assembly in eukaryotes; some of these are also present in Rb. sphaeroides. To investigate the role of one of these proteins, Cox11p, the mitochondrial-like oxidase of Rb. sphaeroides was overexpressed and purified from cells that lacked cox11, the gene for Cox11p. The oxidase that assembled in the absence of Cox11p lacked Cu(B) at the active site and contained greatly reduced amounts of metal at the magnesium/manganese-binding site between subunits I and II. This inactive oxidase, however, did contain hemes a and a(3), Cu(A), and all three subunits. These results indicate that Cox11p is required at a late, perhaps final, step in the assembly of cytochrome oxidase, most likely the insertion of Cu(B). Oxidase which assembled in a strain with a low copy number of cox11 appeared nearly wild type, suggesting that Cox11p is required in substoichiometric amounts for its role in oxidase assembly.  相似文献   

17.
Cysteine-to-serine mutants of a maltose binding protein fusion with the human copper chaperone for superoxide dismutase (hCCS) were studied with respect to (i) their ability to transfer Cu to E,Zn superoxide dismutase (SOD) and (ii) their Zn and Cu binding and X-ray absorption spectroscopic (XAS) properties. Previous work has established that Cu(I) binds to four cysteine residues, two of which, C22 and C25, reside within an Atox1-like N-terminal domain (DI) and two of which, C244 and C246, reside in a short unstructured polypeptide chain at the C-terminus (DIII). The wild-type (WT) protein shows an extended X-ray absorption fine structure (EXAFS) spectrum characteristic of cluster formation, but it is not known how such a cluster is formed. Cys to Ser mutagenesis was used to investigate the Cu binding in more detail. Single Cys to Ser mutations, as represented by C22S and C244S, did little to affect the metal binding ratios of hCCS. Both mutants still showed approximately 2 Cu(I) ions and 1 Zn ion per protein. The double mutants C22/24S and C244/246S, on the other hand, showed Cu binding stoichiometries close to 1:1. The Zn-EXAFS of WT CCS showed a 3-4 histidine ligand environment that is consistent with Zn binding in the SOD-like domain II of CCS. The Zn environment remained unchanged between wild type and all of the mutant CCS proteins. Single Cys to Ser mutations displayed lower activity than WT protein, although close to full activity could be rescued by increasing the CCS:SOD ratios to 8:1 in the assay mixture. The structure of the Cu centers of the single mutants as revealed by EXAFS was also similar to that of WT protein, with clear indications of a Cu cluster. On the other hand, the double mutants showed a greater degree of perturbation. The DI C22/25S mutant was 70% active and formed a cluster with a more intense Cu-Cu interaction. The DIII C244/246S mutant retained only a fraction (16%) of activity and did not form a cluster. The results suggest the formation of a DIII-DIII cluster within a dimeric or tetrameric protein and further suggest that this cluster may be an important element of the copper transfer machinery.  相似文献   

18.
The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex.  相似文献   

19.
The provision of copper to cytochrome oxidase is one of the requisite steps in the assembly of the holoenzyme. Several proteins are involved in this process including Cox17p, Sco1p, and Cox11p. Cox17p, an 8-kDa protein, is the only molecule thought to be involved in shuttling copper from the cytoplasm into mitochondria. Given the small size of Cox17p, we have taken a random and site-directed mutagenesis approach to studying structure-function relationships in Cox17p. Mutations have been generated in 70% of the Cox17p amino acid residues, with only a small subset leading to a detectable respiration-deficient phenotype. We have characterized the respiration-deficient cox17 mutants and found in addition to the expected cytochrome oxidase deficiency, a specific lack of Cox2p and the presence of a misassembled cytochrome oxidase in a subset of mutants. These results suggest that Cox17p is involved upstream of Sco1p in delivering copper specifically to subunit 2 of cytochrome oxidase and predict the existence of a subunit 1-specific copper chaperone.  相似文献   

20.
Members of the twin Cx9C protein family constitute the largest group of proteins in the intermembrane space (IMS) of mitochondria. Despite their conserved nature and their essential role in the biogenesis of the respiratory chain, the molecular function of twin Cx9C proteins is largely unknown. We performed a SILAC-based quantitative proteomic analysis to identify interaction partners of the conserved twin Cx9C protein Cox19. We found that Cox19 interacts in a dynamic manner with Cox11, a copper transfer protein that facilitates metalation of the Cu(B) center of subunit 1 of cytochrome c oxidase. The interaction with Cox11 is critical for the stable accumulation of Cox19 in mitochondria. Cox19 consists of a helical hairpin structure that forms a hydrophobic surface characterized by two highly conserved tyrosine-leucine dipeptides. These residues are essential for Cox19 function and its specific binding to a cysteine-containing sequence in Cox11. Our observations suggest that an oxidative modification of this cysteine residue of Cox11 stimulates Cox19 binding, pointing to a redox-regulated interplay of Cox19 and Cox11 that is critical for copper transfer in the IMS and thus for biogenesis of cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号