首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The product of the START gene CDC25, an upstream element of the RAS/adenylyl cyclase pathway in Saccharomyces cerevisiae, was identified using specific antibodies raised against a chimeric beta-galactosidase/CDC25 protein. The CDC25 protein is poorly expressed and can be detected only when the CDC25 gene is overexpressed under the control of the galactose-inducible GAL1-10 strong promoter elements. It has a molecular weight of 180,000, is not glycosylated and is strongly associated with the particulate fraction. After deletion of residues 1255-1550 the protein is found in the soluble fraction.  相似文献   

2.
The yeast cell division cycle gene CDC6 was isolated by complementation of a temperature-sensitive cdc6 mutant with a genomic library. The amino acid sequence of the 48 kDalton CDC6 gene product, as deduced from DNA sequence data, includes the three consensus peptide motifs involved in guanine nucleotide binding and GTPase activity, a target site for cAMP-dependent protein kinase and a carboxy-terminal domain related to metallothionein sequences. A plasmid-encoded CDC6-beta-galactosidase hybrid protein was located at the plasma membrane by indirect immunofluorescence. Disruption experiments indicate that the CDC6 gene product is essential for mitotic growth.  相似文献   

3.
The CDC4 gene product is associated with the yeast nuclear skeleton   总被引:4,自引:0,他引:4  
The CDC4 gene product of Saccharomyces cerevisiae is required at the late G1/S phase boundary of the cell cycle. In an attempt to better understand the function of CDC4, we performed experiments to localize this protein in the yeast cell. Using antisera, directed against a TrpE-CDC4 fusion protein, to analyze immuno-blots of different subcellular fractions from yeast, we demonstrated that the CDC4 gene product localizes in the nucleus by two different biochemical preparations of the yeast nucleoskeletal proteins. Immunofluorescence microscopy further confirmed its nuclear localization. These data support a model that includes the CDC4 gene product as a component of the yeast nuclear skeleton. The significance of this association in relationship to the biological role of CDC4 is discussed.  相似文献   

4.
S I Reed 《Gene》1982,20(2):255-265
Antisera with specificity for the product of a yeast cell-division-cycle (CDC) gene were prepared by immunizing rabbits to a novel hybrid polypeptide. A segment of the yeast gene CDC28 was fused to the Escherichia coli lacZ gene, which encodes beta-galactosidase, by insertion of yeast sequences into the plasmid pBGF1. pBGF1 contains the lac promoter-operator and most of the lacZ gene. An EcoRI site, 16 codons upstream from the carboxyterminus of the beta-galactosidase coding region, served as a convenient splicing site for the heterologous sequences. To insure that an open reading frame be maintained between the two gene segments for some portion of the fusions, the CDC28-encoding segments were first subjected to limited digestion with nuclease BAL31 to produce random junction points. A hybrid polypeptide encoded by such a continuous open reading frame was purified from E. coli by preparative SDS-polyacrylamide gel electrophoresis and used to immunize rabbits. The resulting antisera were shown to have specificity for CDC28 gene product synthesized by cell-free translation of yeast mRNA.  相似文献   

5.
The v-fgr oncogene codes for a unique transforming protein (P70gag-actin-fgr) that contains virus-specific determinants and cell-derived sequences for both a tyrosine-specific kinase domain and an actin domain. We examined the subcellular distribution of the v-fgr protein by immunofluorescence microscopy and various cell fractionation techniques. By immunofluorescence, the v-fgr protein was localized in a diffuse cytoplasmic pattern within transformed cells. The v-fgr protein was not detectable at substratum adhesion sites. Crude membrane preparations (P100) obtained from fgr-transformed cells contained elevated levels of P70gag-actin-fgr. Further analysis of membranes on discontinous sucrose gradients revealed that P70gag-actin-fgr cofractionated with plasma membranes. Using an alternate method of fractionation, we found that the majority of the v-fgr protein remained with the insoluble matrix obtained by treating cells with a buffer containing Triton X-100. When membranes were similarly treated with detergent, nearly all of v-fgr protein remained with the residual insoluble matrix. These results suggest that the transforming activity of P70gag-actin-fgr may be directed to subcellular cytoskeletal targets at or near the cytoplasmic face of the plasma membrane.  相似文献   

6.
Cdc31 mutants of Saccharomyces cerevisiae arrest at the nonpermissive temperature with large buds, G2 DNA content and, a single, abnormally large spindle pole body (SPB) (Byers, B. 1981. Molecular Genetics in Yeast. Alfred Benzon Symposium. 16:119-133). In this report, we show that the CDC31 gene product is essential for cell viability. We demonstrate that purified CDC31 protein binds Ca2+ and that this binding is highly specific. Taken together, three lines of evidence indicate that CDC31 is a component of the SPB. First, CDC31 cofractionates with enriched preparations of SPBs. Second, immunofluorescence staining indicates that CDC31 colocalizes with a known SPB component. Third, immunoelectron microscopy with whole cells and with isolated SPBs reveals that CDC31 is localized to the half bridge of the SPB, which lies immediately adjacent to the SPB plaques. CDC31 was detected mainly at the cytoplasmic side of the half bridge and, therefore, defines a further substructure of the SPB. We suggest that CDC31 is a member of a family of calcium-binding, centrosome- associated proteins from a phylogenetically diverse group of organisms.  相似文献   

7.
8.
The mdml mutation causes temperature-sensitive growth and defective transfer of nuclei and mitochondria into developing buds of yeast cells at the nonpermissive temperature. The MDM1 gene was cloned by complementation, and its sequence revealed an open reading frame encoding a potential protein product of 51.5 kD. This protein displays amino acid sequence similarities to hamster vimentin and mouse epidermal keratin. Gene disruption demonstrated that MDM1 is essential for mitotic growth. Antibodies against the MDM1 protein recognized a 51-kD polypeptide that was localized by indirect immunofluorescence to a novel pattern of spots and punctate arrays distributed throughout the yeast cell cytoplasm. These structures disappeared after shifting mdm1 mutant cells to the nonpermissive temperature, although the cellular level of MDM1 protein was unchanged. Affinity-purified antibodies against MDM1 also specifically recognized intermediate filaments by indirect immunofluorescence of animal cells. These results suggest that novel cytoplasmic structures containing the MDM1 protein mediate organelle inheritance in yeast.  相似文献   

9.
G Draetta  D Beach 《Cell》1988,54(1):17-26
HeLa cell p34, homolog of the yeast cdc2+/CDC28 protein kinase, has been investigated. p34 was phosphorylated at two or more sites and existed in a complex with p13, the previously identified homolog of the suc1+ gene product of S. pombe. A fraction of the most highly phosphorylated form of p34 was also associated with p62, a newly identified protein that became phosphorylated in vitro. The phosphorylation state of p34, its association with p62, and the protein kinase activity of the complex were each subject to cell cycle regulation. In newly born cells early in G1, p34 was unphosphorylated, not associated with p62, and inactive as a protein kinase. Each of these conditions was reversed in G2 and the p34/p62 complex was maximally active as a protein kinase, with respect to both endogenous and exogenous substrates, during mitotic metaphase. p34 may act to regulate the G2/M transition in HeLa cells.  相似文献   

10.
The Saccharomyces cerevisiae CDC3, CDC10, CDC11, and CDC12 genes encode a family of homologous proteins that are not closely related to other known proteins [Haarer BK, Ketcham SR, Ford SK, Ashcroft DJ, and Pringle JR (submitted)]. Temperature-sensitive mutants defective in any of these four genes display essentially identical pleiotropic phenotypes that include abnormal cell-wall deposition and bud growth, an inability to complete cytokinesis, and a failure to form the ring of 10 nm filaments that normally lies directly subjacent to the plasma membrane in the neck region of budding cells. We showed previously that the CDC3 and CDC12 gene products localize to the region of the mother-bud neck and are probably constituents of the ring of 10 nm filaments. We now report the generation of polyclonal antibodies specific for the CDC11 product (Cdc11p) and the use of these antibodies in immunofluorescence experiments with wild-type and mutant cells. The results suggest that Cdc11p is also a constituent of the filament ring, and thus support the hypothesis that the S. cerevisiae 10 nm filaments represent a novel type of eukaryotic cytoskeletal element. Cdc11p and actin both localize to the budding site well in advance of bud emergence and at approximately the same time, and both proteins also remain localized at the old budding site for some time after cytokinesis. Cdc11p also localizes to regions of cell-wall reorganization in mating cells and in cells responding to purified mating pheromone. Surprisingly, most preparations of affinity purified Cdc11p-specific antibodies also stained the nuclear and cytoplasmic microtubules. Although this staining probably reflects the existence of an epitope shared by Cdc11p and some microtubule-associated protein, the possibility that a fraction of the Cdc11p is associated with the microtubules could not be eliminated.  相似文献   

11.
The vaccinia virus (VV) I3L gene product is a single-stranded DNA-binding protein made early in infection that localizes to the cytoplasmic sites of viral DNA replication (S. C. Rochester and P. Traktman, J. Virol. 72:2917-2926, 1998). Surprisingly, when replication was blocked, the protein localized to distinct cytoplasmic spots (A. Domi and G. Beaud, J. Gen. Virol. 81:1231-1235, 2000). Here these I3L-positive spots were characterized in more detail. By using an anti-I3L peptide antibody we confirmed that the protein localized to the cytoplasmic sites of viral DNA replication by both immunofluorescence and electron microscopy (EM). Before replication had started or when replication was inhibited with hydroxyurea or cytosine arabinoside, I3L localized to distinct cytoplasmic punctate structures of homogeneous size. We show that these structures are not incoming cores or cytoplasmic sites of VV early mRNA accumulation. Instead, morphological and quantitative data indicate that they are specialized sites where the parental DNA accumulates after its release from incoming viral cores. By EM, these sites appeared as complex, electron-dense structures that were intimately associated with the cellular endoplasmic reticulum (ER). By double labeling of cryosections we show that they contain DNA and a viral early protein, the gene product of E8R. Since E8R is a membrane protein that is able to bind to DNA, the localization of this protein to the I3L puncta suggests that they are composed of membranes. The results are discussed in relation to our previous data showing that the process of viral DNA replication also occurs in close association with the ER.  相似文献   

12.
Sarcolemmal vesicles with right-side-out configuration were prepared from normal fresh human and rabbit skeletal muscle bundles by incubation in 140 mM KCl solution containing collagenase. The vesicles were used to examine the association of dystrophin, the protein product of the Duchenne muscular dystrophy gene, with the sarcolemma. Western blot analysis, indirect immunofluorescence, and immunoperoxidase staining using specific antibodies raised against the N-terminal and the C-terminal domains show that dystrophin remains associated with the membrane of sarcolemmal vesicles. Indirect immunofluorescence microscopy using permeabilized and unpermeabilized vesicles indicated that both the N-terminus and the C-terminus of dystrophin are localized to the cytoplasmic surface of the sarcolemma. These results suggest that dystrophin has much stronger attachment to the surface membrane than it has to the internal domain of skeletal muscle fibers. Sarcolemmal vesicles thus represent a new system for studying the function of dystrophin and the molecular basis of its association with the sarcolemma.  相似文献   

13.
The UL56 gene product of herpes simplex virus (HSV) has been shown to play an important role in viral pathogenicity. However, the properties and functions of the UL56 protein are little understood. We raised rabbit polyclonal antisera specific for the UL56 protein of HSV type 2 (HSV-2) and examined its expression and properties. The gene product was identified as three polypeptides with apparent molecular masses ranging from 32 to 35 kDa in HSV-2-infected cells, and at least one species was phosphorylated. Studies of their origins showed that the UL56 protein of HSV-2 is also translated from the upstream in-frame methionine codon that is not present in the HSV-1 genome. Synthesis was first detected at 6 h postinfection and was not abolished by the viral DNA synthesis inhibitor phosphonoacetic acid. Indirect immunofluorescence studies revealed that the UL56 protein localized to both the Golgi apparatus and cytoplasmic vesicles in HSV-2-infected and single UL56-expressing cells. Deletion mutant analysis showed that the C-terminal hydrophobic region of the protein was required for association with the cytoplasmic membrane and that the N-terminal proline-rich region was important for its translocation to the Golgi apparatus and cytoplasmic vesicles. Moreover, the results of protease digestion assays and sucrose gradient fractionation strongly suggested that UL56 is a tail-anchored type II membrane protein associated with lipid rafts. We thus hypothesized that the UL56 protein, as a tail-anchored type II membrane protein, may be involved in vesicular trafficking in HSV-2-infected cells.  相似文献   

14.
15.
LSP1 is a lymphocyte-specific intracellular Ca2(+)-binding protein. We found previously that a fraction of the total cellular pool of LSP1 protein accumulates at or near the cytoplasmic face of the plasma membrane. LSP1 protein was also shown to be present in the cytoplasm. Here we report that approximately 10% of the total intracellular LSP1 protein is associated with the Nonidet P-40 insoluble cytoskeleton of the mIgM+, mIgD+ B lymphoma cell line BAL17. Variation in conditions of extraction did not alter this value. To rule out the possibility that LSP1 associates with the nucleus that is also present in the detergent insoluble pellet, we prepared a separate nuclear fraction essentially free of cytoskeletal material and found only trace amounts of LSP1 protein. After accounting for yield losses during subcellular fractionation by measuring the recovery of 125I-labeled membrane IgM, or of the cytoplasmic marker enzyme lactate dehydrogenase activity, the LSP1 in membrane fractions was calculated to represent approximately 30% of the total cellular LSP1 and cytoplasmic LSP1 accounted for approximately 55% of the total. Approximately 75% of the plasma membrane LSP1 protein was soluble in 1% Nonidet P-40 containing buffer, indicating that the majority of the LSP1 in the plasma membrane fraction was distinct from the cytoskeletal LSP1 protein. The preparation of membrane fractions in the presence of 1 M NaCl, or washing of membranes in 3 M KCl did not diminish the levels of membrane LSP1. These results show the existence of three discrete intracellular LSP1 pools. Double label immunofluorescence studies showed that the peripheral ring-like distribution of LSP1 in BAL17 cells became a distinct cap upon cross-linking the mIgM. These intracellular LSP1 caps were always found to be located directly underneath the mIgM caps.  相似文献   

16.
M Simon  B Seraphin    G Faye 《The EMBO journal》1986,5(10):2697-2701
We have isolated, in yeast, a nuclear gene named KIN28 which presents significant sequence homology with the cell-division-cycle CDC28 gene, with members of the protein-tyrosine kinase family (src, erb, abl, epidermal growth factor, etc.) and those of the family of protein kinases phosphorylating serine and threonine. This strongly suggests that KIN28 is endowed with a protein kinase activity. In contrast with CDC28, KIN28 is interrupted by an intervening sequence. The KIN28 gene failed to complement cdc28 mutations and was shown to be essential for cell proliferation.  相似文献   

17.
Budding cells of the yeast Saccharomyces cerevisiae possess a ring of 10-nm-diameter filaments, of unknown biochemical nature, that lies just inside the plasma membrane in the neck connecting the mother cell to its bud. Electron microscopic observations suggest that these filaments assemble at the budding site coincident with bud emergence and disassemble shortly before cytokinesis (Byers, B. and L. Goetsch. 1976. J. Cell Biol. 69:717-721). Mutants defective in any of four genes (CDC3, CDC10, CDC11, or CDC12) lack these filaments and display a pleiotropic phenotype that involves abnormal bud growth and an inability to complete cytokinesis. We showed previously by immunofluorescence that the CDC12 gene product is probably a constituent of the ring of 10-nm filaments (Haarer, B. and J. Pringle. 1987. Mol. Cell. Biol. 7:3678-3687). We now report the use of fusion proteins to generate polyclonal antibodies specific for the CDC3 gene product. In immunofluorescence experiments, these antibodies decorated the neck regions of wild-type and mutant cells in patterns suggesting that the CDC3 gene product is also a constituent of the ring of 10-nm filaments. We also used the CDC3-specific and CDC12-specific antibodies to investigate the timing of localization of these proteins to the budding site. The results suggest that the CDC3 protein is organized into a ring at the budding site well before bud emergence and remains so organized for some time after cytokinesis. The CDC12 product appears to behave similarly, but may arrive at the budding site closer to the time of bud emergence, and disappear from that site more quickly after cytokinesis, than does the CDC3 product. Examination of mating cells and cells responding to purified mating pheromone revealed novel arrangements of the CDC3 and CDC12 products in the regions of cell wall reorganization. Both proteins were present in normal-looking ring structures at the bases of the first zygotic buds.  相似文献   

18.
19.
G Draetta  L Brizuela  J Potashkin  D Beach 《Cell》1987,50(2):319-325
cdc2+ and CDC28 play central roles in the cell division cycles of the widely divergent yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. The genes encode protein kinases that show 62% protein sequence identity and are capable of cross-complementation. Monoclonal antibodies were raised against p34cdc2, and a subset recognize p36cdc28. The cross-reacting antibodies detected a 34 kd homolog of the p34cdc2/p36CDC28, protein in HeLa cells. Human p34 was also recognized by an affinity-purified polyclonal anti-p34cdc2 serum. Peptide mapping of p34cdc2, p36CDC28, and human p34 revealed complete conservation of four tryptophan residues in the three proteins. p34 thus appears to be closely related to the two yeast proteins. In addition, a p34 immune complex showed protein kinase activity in vitro, and HeLa cell p34 interacts with p13, the human homolog of the suc1+ gene product of S. pombe.  相似文献   

20.
Human serum albumin has been constitutively expressed in a Saccharomyces cerevisiae brewing yeast. After cell growth and disruption the product was associated with the insoluble fraction and represented approximately 1% of total cell protein. After the cell debris was extensively washed, the albumin was solubilized with 8 M urea and 28 mM 2-mercaptoethanol in 50 mM sodium carbonate buffer, pH 10. The denatured albumin was refolded by dialysis and further purified by anion exchange and gel filtration chromatography. Losses of renatured material could be reduced, or higher protein concentrations used during refolding, if the denatured product was purified by cation-exchange chromatography in urea prior to refolding. Apart from an additional N-terminal N-acetyl methionine, the refolded product proved identical to human serum albumin derived from plasma when compared by a variety of physical, chemical, and biological analytical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号