首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence alignment and structure prediction are used to locate catalytic α-amylase-type (β/α)8-barrel domains and the positions of their β-strands and α-helices in isoamylase, pullulanase, neopullulanase, α-amylase-pullulanase, dextran glucosidase, branching enzyme, and glycogen branching enzymes—all enzymes involved in hydrolysis or synthesis of α-1,6-glucosidic linkages in starch and related polysaccharides. This has allowed identification of the transferase active site of the glycogen debranching enzyme and the locations of β ? α loops making up the active sites of all enzymes studied. Activity and specificity of the enzymes are discussed in terms of conserved amino acid residues and loop variations. An evolutionary distance tree of 47 amylolytic and related enzymes is built on 37 residues representing the four best conserved β-strands of the barrel. It exhibits clusters of enzymes close in specificity, with the branching and glycogen debranching enzymes being the most distantly related.  相似文献   

2.
Glycogen, the principal storage compound of assimilatory products in Anacystis nidulans, is synthesized in the light and degraded in the dark. 14C-labelled glycogen and its radioactive limit dextrin obtained by phosphorylase action were used as substrates to identify enzymes involved in glycogen mobilization. A crude homogenate of cells kept in the dark contained the following enzymes: glycogen phosphorylase (EC 2.4.1.1.) that is firmly bound to glycogen, a debranching enzyme that hydrolyzes 1,6--glucosidic bonds, and an -glucosidase (EC 3.2.1.20). Other amylolytic enzymes were not detectable Using ion exchange chromatography on DEAE-cellulose, -glucosidase and the debranching enzyme could be partly separated from each other and completely from the phosphorylase-glycogen complex. On the basis of their known substrate specificities, the cooperation of these 3 enzymes is sufficient to account for the complete conversion of glycogen into glucose and glucose 1-phosphate.  相似文献   

3.
Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water‐insoluble and semi‐crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water‐soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water‐insoluble, partly crystalline, amylose‐containing starch‐like polyglucan was restored in GlgB‐expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water‐soluble, poorly crystalline polyglucan.  相似文献   

4.
A gene, treX, encoding a debranching enzyme previously cloned from the trehalose biosynthesis gene cluster of Sulfolobus solfataricus P2 was expressed in Escherichia coli as a His-tagged protein and the biochemical properties were studied. The specific activity of the S. solfataricus debranching enzyme (TreX) was highest at 75°C and pH 5.5. The enzyme exhibited hydrolysing activity toward α-1,6-glycosidic linkages of amylopectin, glycogen, pullulan, and other branched substrates, and glycogen was the preferred substrate. TreX has a high specificity for hydrolysis of maltohexaosyl α-1,6-β-cyclodextrin, indicating the high preference for side chains consisting of 6 glucose residues or more. The enzyme also exhibited 4-α-sulfoxide-glucan transferase activity, catalysing transfer of α-1,4-glucan oligosaccharides from one chain to another. Dimethyl sulfoxide (10%, v/v) increased the hydrolytic activity of TreX. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation revealed that the enzyme exists mostly as a dimer at pH 7.0, and as a mixture of dimers and tetramers at pH 5.5. Interestingly, TreX existed as a tetramer in the presence of DMSO at pH 5.5–6.5. The tetramer showed a 4-fold higher catalytic efficiency than the dimer. The enzyme catalysed not only intermolecular trans-glycosylation of malto-oligosaccharides (disproportionation) to produce linear α-1,4-glucans, but also intramolecular trans-glycosylation of glycogen. The results presented in this study indicated that TreX may be associated with glycogen metabolism by selective cleavage of the outer side chain.  相似文献   

5.
Glycogen debranching enzyme (GDE) in mammals and yeast exhibits α-1,4-transferase and α-1,6-glucosidase activities within a single polypeptide chain and facilitates the breakdown of glycogen by a bi-functional mechanism. Each enzymatic activity of GDE is suggested to be associated with distinct domains; α-1,4-glycosyltransferase activity with the N-terminal domain and α-1,6-glucosidase activity with the C-terminal domain. Here, we present the biochemical features of the GDE from Saccharomyces cerevisiae using the substrate glucose(n)-β-cyclodextrin (Gn-β-CD). The bacterially expressed and purified GDE N-terminal domain (aa 1–644) showed α-1,4-transferase activity on maltotetraose (G4) and G4-β-CD, yielding various lengths of (G)n. Surprisingly, the N-terminal domain also exhibited α-1,6-glucosidase activity against G1-β-CD and G4-β-CD, producing G1 and β-CD. Mutational analysis showed that residues D535 and E564 in the N-terminal domain are essential for the transferase activity but not for the glucosidase activity. These results indicate that the N-terminal domain (1–644) alone has both α-1,4-transferase and the α-1,6-glucosidase activities and suggest that the bi-functional activity in the N-domain may occur via one active site, as observed in some archaeal debranching enzymes.  相似文献   

6.
A debranching enzyme purified from germinating rice endosperm hydrolyzed oligosaccharides having maltosyl or maltotriosyl branches (B4-B6) moderately. Hydrolysis of maltosylmaltose by a “pullulanase” of higher plant origin has been scarcely reported, while our enzyme debranched maltosylmaltose like microbial pullulanase. Additionally, the enzyme slowly hydrolyzed isopanose to glucose and maltose.

Gel-filtration analyses of hydrolysis products of polysaccharides with the enzyme suggested that while it hydrolyzed α-1,6-linkages of pullulan at random, it hydrolyzed amylopectin and glycogen at the outer α-1,6-linkages preferentially In the hydrolysis products of glycogen with the enzyme for a longer incubation time, large molecular-weight glucans still remained. This indicated that the enzyme was able to hydrolyze a few of the α-1,6-linkages of glycogen.  相似文献   

7.
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme.  相似文献   

8.

Background

Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain''s ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke.

Results

Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia.

Conclusion

Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity.  相似文献   

9.
A debranching enzyme (R-enzyme or pullulan-6-glucanohydrolase, EC3.2.1.41), free from contaminating carbohydrases and homogeneous by poly(acrylamide) disc-gel electrophoresis, has been purified from malted barley. A partially purified preparation of this enzyme (3.1 units/mg of protein) accelerated the rate of digestion of barley-starch granules by the action of purified alpha and beta amylases to the same extent as was effected by the dialyzed, crude extract from malted barley. Contrary to expectation, the debranching enzyme, purified to homogeneity (10 units/mg of protein), had very little accelerating effect. These results indicate that a factor or factors, which may be maltase or α-d-glucosidase and were lost during the purification of the debranching enzyme, may play a role in the digestion of starch granules by the dialyzed, crude extract from malted barley in vitro and by enzymes in the endosperm of germinating barley seeds in vivo. The debranching enzymes, including barley-malt R-enzyme, Aerobacter pullulanase, and Pseudomonas isoamylase, did not digest starch granules to a detecble extent.  相似文献   

10.
A novel continuous spectrophotometric assay to measure the activity of the debranching enzyme and α-amylase has been developed. The assay mixture comprises the debranching enzyme (GlgX from Escherichia coli) or α-amylase (PPA from porcine pancreas), a reducing end-specific α-glucosidase (MalZ), maltodextrin-branched β-cyclodextrin (Glcn-β-CD) as the substrate, and the glucose oxidase/peroxidase system (GOPOD). Due to its high reducing end specificity, the branch chains of the substrates are not hydrolyzed by MalZ. After hydrolysis by GlgX or PPA, the released maltodextrins are immediately hydrolyzed into glucose from the reducing end by MalZ, whose concentration is continuously measured by GOPOD at 510 nm in a thermostat spectrophotometer. The kinetic constants determined for GlgX (Km = 0.66 ± 0.02 mM and kcat = 76.7 ± 1.5 s−1) are within a reasonable range compared with those measured using high-performance anion-exchange chromatography (HPAEC). The assay procedure is convenient and sensitive, and it requires lower concentrations of enzymes and substrate compared with dinitrosalicylic acid (DNS) and HPAEC analysis.  相似文献   

11.
Characterization of Starch-Debranching Enzymes in Pea Embryos   总被引:5,自引:0,他引:5       下载免费PDF全文
Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.  相似文献   

12.
Starch debranching enzyme (R-enzyme or pullulanase) was purified to homogeneity from developing endosperm of rice (Oryza sativa L. cv. Fujihikari) using a variety of high-performance liquid chromatography columns, and characterized. A cDNA clone encoding the full length of the rice endosperm debranching enzyme was isolated and its nucleotide sequence was determined. The cDNA contains an open reading frame of 2958 bp. The mature debranching enzyme of rice appears to be composed of 912 amino acids with a predicted relative molecular mass (Mr) of 102069 Da, similar in size to its Mr of about 100 000 Da estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The amino acid sequence of rice debranching enzyme is substantially similar to that of bacterial pullulanase, while it bears little similarity to that of bacterial isoamylase or to glycogen debranching enzymes from human muscle and rabbit muscle. Southern blot analyses strongly suggest that the debranching enzyme gene is present as a single copy in the rice genome. Analysis by restriction fragment length polymorphism with a probe including the 3′-untranslated region of cDNA for rice debranching enzyme confirmed that the debranching enzyme gene is located on chromosome 4.  相似文献   

13.
A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined deletions in the glgX gene is reported here. The results show that the GlgX gene encodes an isoamylase-type debranching enzyme with high specificity for hydrolysis of chains consisting of three or four glucose residues. This specificity ensures that GlgX does not generate an extensive futile cycle during glycogen synthesis in which chains with more than four glucose residues are transferred by the branching enzyme. Disruption of glgX leads to overproduction of glycogen containing short external chains. These results suggest that the GlgX protein is predominantly involved in glycogen catabolism by selectively debranching the polysaccharide outer chains that were previously recessed by glycogen phosphorylase.  相似文献   

14.
Two well-established methods to prepare glycogen are available: (1) extraction from natural resources such as shellfish and animal tissues; (2) synthesis from glucose-1-phosphate using two enzymes, α-glucan phosphorylase (EC 2.4.1.1) and branching enzyme (EC 2.4.1.18). We have developed a novel enzymatic process for glycogen production, in which short-chain amylose is first prepared from starch or dextrin by using isoamylase (EC 3.2.1.68), and then branching enzyme and amylomaltase (EC 2.4.1.25) are added to synthesize glycogen. Our enzymatic process, using isoamylase, branching enzyme and amylomaltase, is currently the most efficient for glycogen production. Furthermore, the molecular weight of glycogen is controllable in a range of 3.0×106 to 3.0×107 by adjusting some parameters of the reaction.  相似文献   

15.
A structural study of the water-soluble dextran made by Leuconostoc mesenteroides strain C (NRRL B-1298) was conducted by enzymic degradation and subsequent 13C-NMR analysis of the native dextran and its limit dextrins. The α-l,2-debranching enzyme removed almost all of the branched D-glucose residues, and gave a limit dextrin having a much longer sequence of the internal chain length (degree of linearity: n = 24.5 compared with the value of n = 3.3 for the native dextran). The degree of hydrolysis with debranching enzyme corresponded to the content of α-1,2-linkages determined by chemical methods, which suggested that most of the α-l,2-linkages in the dextran B-1298 constituted branch points of a single D-glucose residue. A synergistic increase of susceptibility of the dextran B-1299 was observed by simultaneous use of debranching enzyme and endodex-tranase. 13C-NMR spectral analysis indicated the similarity of structure of dextran B-1298 to that of B-1396, rather than that of B-1299. Occurrence of α-l,3-linkages in the limit dextrin was supported by a newly visualized chemical shift at 83.7 ppm.  相似文献   

16.
Summary The liver enzymes responsible for the breakdown and synthesis of glycogen from glucose have been investigated cytochemically in rats exposed to 1200 rads of x-irradiation. It was found that significant changes occur in their activities and that amylophosphorylase and amylo-1,6-glucosidase (debranching enzyme), both of which are responsible for the conversion of glycogen to glucose, are markedly inhibited by radiation. A significant inhibition of the activity of 1,41,6 transglucosidase (branching enzyme) was also observed. In contrast, the activity of UDPG-glycogen transglucosylase, which is responsible for the in vivo synthesis of 1,4-polysaccharides, was found to be stimulated.  相似文献   

17.
A debranching enzyme was extracted from the endosperm of germinating rice seeds and purified through three steps, namely cyclohexaamylose-coupled Sepharose 6B, Ultrogel AcA-44 and Bio-Gel P-150 column chromatography. This disc-electrophoretically homogeneous enzyme showed a specific activity of 43 units/mg of protein (30°C) with a pH optimum of 5.5. The isoelectric point was 4.9, unlike that (pI 3.5) of debranching enzyme of ungerminated rice seeds. Our enzyme hydrolyzed pullulan rapidly, and glutinous rice starch and waxy corn starch moderately. The enzyme was also able to act on phytoglycogen and glycogen unlike debranching enzymes originating in some plants.  相似文献   

18.
α-Amylases have been found to convert starch and glycogen, in part, to products other than hemiacetal-bearing entities (maltose, maltodextrins, etc.)—hitherto, the only products obtained from natural α-glucans by α-amylolysis. Glycosides of maltosaccharides were synthesized by purified α-amylases acting on starch or bacterial glycogen in the presence of p-nitrophenyl α- or β-d-glucoside. From a digest with crystallized B. subtilis var. amyloliquefaciens α-amylase, containing 4 mg/ml of [14C]glycogen and 40 mmp-NP β-d-glucoside, three pairs of correspondingly labeled glycosides and sugars were recovered: p-NP α-d-[14C]glucopyranosyl (1 → 4) β-d-glucopyranoside, and [14C]glucose; p-NP α-[14C]maltosyl (1 → 4) β-d-glucopyranoside, and [14C]maltose; p-NP α-[14C]maltotriosyl (1 → 4) β-d-glucopyranoside, and [14C]maltotriose. The three glycosides accounted for 11.4% of the [14C]glycogen donor substrate; the three comparable sugars, for 30.4%; higher maltodextrins, for 58.2%. Calculations based on the molar yields of all reaction products show that [14C]glycosyl moieties were transferred from donor to p-NP β-d-glucoside with a frequency of 0.234 relative to all transfers to water. This is a very high value considering the minute molar ratio (0.0007) of β-d-glucoside-to-water concentration. Less striking but similar findings were obtained with cryst. hog pancreatic and Aspergillus oryzae α-amylases. The results extend earlier findings (Hehre et al., Advan. Chem. Ser. (1973) 117, 309) in showing that α-amylases have a substantial capacity to utilize the C4-carbinols of certain d-glucosyl compounds as acceptor sites.  相似文献   

19.
Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.  相似文献   

20.
The influence of noradrenaline acting at α2-AR and β2-ARs on the turnover of glycogen after learning has been investigated. The role of glycogen turnover in memory formation was examined using weakly-reinforced, single trial bead discrimination training in day-old domestic chickens. This study follows our previous work that focused on the need for glycogen breakdown (glycogenolysis) during learning. Inhibition of glycogenolysis by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) prevented the consolidation of strongly-reinforced learning and inhibited memory. The action of DAB could be prevented by stimulating glycogenolysis with the selective β2-AR agonist, zinterol. Stimulation of α2-ARs has been shown to lead to an increase in the turnover and synthesis of glycogen. In the present study, we examined the effect of inhibition of α2-AR stimulated glycogen turnover (measured as14C-glucose incorporation into glycogen) on the ability of zinterol to promote the consolidation of weakly reinforced memory. In astrocytes, the selective α2-AR agonist clonidine stimulated 14C-glucose incorporation into glycogen in chick astrocytes and this was inhibited by the selective α2-AR antagonist, ARC239. The critical importance of the timing of ARC239 injection relative to training and intracerebral administration of zinterol was examined. It is concluded that our data provides evidence for a readily accessible labile pool of glycogen in brain astrocytes. If glycogen synthesis is inhibited, the can be depleted within 10?min, thus preventing zinterol from promoting consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号