共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition. However, specific uses of the fixed nitrogen
have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to enhanced release of organic acids, leading to
improved solubilization of the mineral substrate. Three lichen fungi were isolated fromXanthoparmelia mexicana, a foliose lichen, and they were cultured separately or with a heterotrophic N2 fixer in nutrient broth media in the presence of a mineral substrate. Cells of the N2-fixing bacteria attached to the mycelial mats of all fungi, forming biofilms. All biofilms showed higher solubilizations
of the substrate than cultures of their fungi alone. This finding has bearing on the significance of the origin and existence
of N2-fixing activity in the evolution of lichen symbiosis. Further, our results may explain why there are N2-fixing photobionts even in the presence of non-fixing photobionts (green algae) in some remarkable lichens such asPlacopsis gelida. Our study sheds doubt on the idea that the establishment of terrestrial eukaryotes was possible only through the association
between a fungus and a phototroph. 相似文献
2.
We have developed a simple method for distinguishing between bacterial cultures that produce different amount of exopolysaccharide. It is based upon small differences in pellet volume formed by those cultures upon centrifugation. For that we have constructed a special centrifugation tube consisting of two connected chambers: an upper 12 ml chamber connected to a lower capillary chamber. Cells are applied to the upper chamber and following centrifugation, sink to its bottom and are forced into the capillary so that the height they fill can be measured. This procedure has been developed in order to demonstrate differences in volume of centrifugation pellet formed by similar number of Escherichia coli K12 wild type, rpoS mutant and yjbG rpoS double mutant cells. These differences are further shown to be a result of overproduction of colanic acid exopolysaccharide in the mutant strains. We suggest that this simple method can be employed to detect differences in other cell surface structures and to estimate biomass when optical density measurement or microscopic count is not applicable. 相似文献
3.
V. Durán-Toro A. Gran-Scheuch N. Órdenes-Aenishanslins J.P. Monrás L.A. Saona F.A. Venegas T.G. Chasteen D. Bravo J.M. Pérez-Donoso 《Analytical biochemistry》2014
A simple and sensitive method for quantification of nanomolar copper with a detection limit of 1.2 × 10−10 M and a linear range from 10−9 to 10−8 M is reported. For the most useful analytical concentration of quantum dots, 1160 μg/ml, a 1/Ksv value of 11 μM Cu2+ was determined. The method is based on the interaction of Cu2+ with glutathione-capped CdTe quantum dots (CdTe–GSH QDs) synthesized by a simple and economic biomimetic method. Green CdTe–GSH QDs displayed the best performance in copper quantification when QDs of different sizes/colors were tested. Cu2+ quantification is highly selective given that no significant interference of QDs with 19 ions was observed. No significant effects on Cu2+ quantification were determined when different reaction matrices such as distilled water, tap water, and different bacterial growth media were tested. The method was used to determine copper uptake kinetics on Escherichia coli cultures. QD-based quantification of copper on bacterial supernatants was compared with atomic absorption spectroscopy as a means of confirming the accuracy of the reported method. The mechanism of Cu2+-mediated QD fluorescence quenching was associated with nanoparticle decomposition. 相似文献
4.
Leonard Robert Gardner 《Biogeochemistry》1990,11(2):97-110
Residual soils (saprolites) developed on crystalline rocks appear to form by an essentially isovolumetric process (i.e. without dilation or compaction). Isovolumetric geochemical analysis of a suite of saprolite samples developed on a common parent rock can be used to estimate the relative rates of long-term losses of P and Si during weathering. Using the export of dissolved Si in rivers as a weathering index, one can then estimate the rate of P release due to chemical weathering by means of the P-Si loss ratio in saprolite. For three basins where data are available (Liberty Hill, SC; Amazon River, Brazil: Rio Negro, Brazil) estimated P weathering release rates are 163, 457, and 242 moles P km–2 yr–1 respectively. These compare to precipitation inputs of 684, 700 and 630 moles P km–2 yr–1 and total river exports of 256, 4490 and 820 moles P km–2 yr–1, respectively. The Rio Negro shows a near perfect balance between the input of P via precipitation and chemical weathering and the riverine output of dissolved and suspended P. This system, however, raised the unsolved problem of the source that supports the atmospheric P input. 相似文献
5.
Müller R Gröger G Hiller KA Schmalz G Ruhl S 《Applied and environmental microbiology》2007,73(8):2653-2660
For quantification of bacterial adherence to biomaterial surfaces or to other surfaces prone to biofouling, there is a need for methods that allow a comparative analysis of small material specimens. A new method for quantification of surface-attached biotinylated bacteria was established by in situ detection with fluorescence-labeled avidin-D. This method was evaluated utilizing a silicon wafer model system to monitor the influences of surface wettability and roughness on bacterial adhesion. Furthermore, the effects of protein preadsorption from serum, saliva, human serum albumin, and fibronectin were investigated. Streptococcus gordonii, Streptococcus mitis, and Staphylococcus aureus were chosen as model organisms because of their differing adhesion properties and their clinical relevance. To verify the results obtained by this new technique, scanning electron microscopy and agar replica plating were employed. Oxidized and poly(ethylene glycol)-modified silicon wafers were found to be more resistant to bacterial adhesion than wafers coated with hydrocarbon and fluorocarbon moieties. Roughening of the chemically modified surfaces resulted in an overall increase in bacterial attachment. Preadsorption of proteins affected bacterial adherence but did not fully abolish the influence of the original surface chemistry. However, in certain instances, mostly with saliva or serum, masking of the underlying surface chemistry became evident. The new bacterial overlay method allowed a reliable quantification of surface-attached bacteria and could hence be employed for measuring bacterial adherence on material specimens in a variety of applications. 相似文献
6.
The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long‐term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock‐dwelling micro‐organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio‐weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial‐mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate () of Ca, Mg, Si and K from the basalt by more than fivefold (5.21–12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in was less than threefold (2.04–2.97) and the pH increase was only 0.83 units. The values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio‐essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si‐rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth. 相似文献
7.
Stone and rock substrates provide important habitat for many types of stream-dwelling invertebrates. Measures of the invertebrate communities inhabiting rock substrates are often an important component of ecological, monitoring and disturbance studies in streams. A major obstacle to researchers examining rock-inhabiting invertebrates is the time and effort expended on currently used methods of determining rock surface area to derive invertebrate densities on these substrates. In an attempt to more efficiently determine invertebrate densities from rock substrates in streams, we tested a direct method of calculating rock surface area from rock weight or displacement volume. This method allows very quick determinations of rock surface area in the field. Surface area estimates made using this technique were highly correlated to those from a widely used and more time-consuming method. Measurements made using this new method should theoretically give better surface area estimates than any other commonly used technique. 相似文献
8.
Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa
Bacchetti De Gregoris T Aldred N Clare AS Burgess JG 《Journal of microbiological methods》2011,86(3):351-356
Mapping the distribution of phylogenetically distinct bacteria in natural environments is of primary importance to an understanding of ecological dynamics. Here we present a quantitative PCR (qPCR) assay for the analysis of higher taxa composition in natural communities that advances previously available methods by allowing quantification of several taxa during the same qPCR run. Existing primers targeting the 16S rRNA gene specific for Firmicutes, Actinobacteria, Bacteroidetes and for the α and γ subdivisions of the Proteobacteria were improved by largely increasing the coverage of the taxon they target without diminishing their specificity. The qPCR assay was validated in vitro testing artificial mixtures of 16S rRNA sequences and used to characterise the composition of natural communities developing in young marine biofilms. The possible contribution of the proposed technique in revealing ecological dynamics affecting higher bacterial taxa is discussed. 相似文献
9.
A variation on Peterson's modification of the Lowry method for microbial protein determination was developed in which 10% (w/v) oxalic acid was used to remove jarosite. This allowed the quantification of Thiobacillus ferrooxidans entrapped in solid jarosite or in aqueous suspensions containing jarosite. The quantity of protein measured was not affected by the amount of jarosite in the culture, the concentration of oxalic acid, or the time of exposure (up to 72 h) of the sample to oxalic acid. An application of this method was demonstrated in the quantification of biomass immobilized in jarosite on the surface of polystyrene beads in an inverse fluidized bed bioreactor used for the rapid microbial oxidation of ferrous iron. 相似文献
10.
This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay‐free process control feedback in large‐scale cultivation platforms. In this technique, three‐band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large‐scale operation. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:808–816, 2013 相似文献
11.
Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7% ± 18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities. 相似文献
12.
van Teeffelen S Shaevitz JW Gitai Z 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(5):427-436
Fluorescence microscopy is the primary tool for studying complex processes inside individual living cells. Technical advances in both molecular biology and microscopy have made it possible to image cells from many genetic and environmental backgrounds. These images contain a vast amount of information, which is often hidden behind various sources of noise, convoluted with other information and stochastic in nature. Accessing the desired biological information therefore requires new tools of computational image analysis and modeling. Here, we review some of the recent advances in computational analysis of images obtained from fluorescence microscopy, focusing on bacterial systems. We emphasize techniques that are readily available to molecular and cell biologists but also point out examples where problem-specific image analyses are necessary. Thus, image analysis is not only a toolkit to be applied to new images but also an integral part of the design and implementation of a microscopy experiment. 相似文献
13.
The ability of bacteria to produce extracellular polysaccharides has been regarded as an indication of biofilm-forming capacity. Therefore, the determination of the sugar content in bacterial samples becomes a significant parameter. The colorimetric methods currently used are rather sensitive to the nature of the sugars and therefore require knowledge of the sugar types present in the samples. Unfortunately, the types of sugars present in bacteria are generally unknown and often composed of a complex mixture. In this article, we propose an alternative method based on Fourier transform infrared (FTIR) spectroscopy for the estimation of the total sugar content in bacterial samples. The method is based on a systematic treatment of FTIR spectra obtained from dried bacteria samples. It is assumed that the total sugar amount can be estimated from the area of characteristic bands between 970 and 1182 cm(-1). In parallel, the amide II band (1560-1530 cm(-1)) associated with proteins, or the C-H stretching region (2820-3020 cm(-1)) associated with the biomass, can be used for normalization purposes. Therefore, the ratio of the band area in the sugar window over that of the amide II or C-H stretching can be used to report the sugar content in bacterial samples. This method has been validated on model bacterial mixtures containing sugars, proteins, and DNA. Results with real bacterial samples are also provided and show conclusively that increased sugar contents in biofilms can be identified. The proposed FTIR approach requires minimal sample preparation and a single acquisition, is rapid, and may be applied to any kind of bacterial growth. 相似文献
14.
GenomeExplorer is a program for comparative analysis of regulation in prokaryotic genomes. The program has options for signal
search, comparison of gene samples, search for paralogs and orthologs, iterative construction of signal profiles. The program
has a convenient graphic interface, allowing for navigation in the annotation window, in the genome map, and in the table
of gene similarities. The use of the system clipboard allows one to export the results of analysis into Word and Excel, and
to call external programs via the Internet. 相似文献
15.
Filarial nematodes harbour intracellular symbiotic bacteria belonging to the genus Wolbachia. Wolbachia is thought to play an important role in the biology of the nematode. Moreover, Wolbachia appears to be involved in the immunopathogenesis of filariasis and in the onset of the side-effects of antifilarial therapy. Investigations in these research areas require reliable methods to quantify Wolbachia both in nematodes and in vertebrate tissues. To this purpose, we designed a quantitative real-time PCR targeted on the ftsZ gene of the Wolbachia of Brugia pahangi, a model filarial species maintained in gerbils. The method was applied to quantify Wolbachia in Brugia pahangi, from animals with or without tetracycline treatment. Our results show that tetracycline treatment leads to dramatic reduction or clearance of Wolbachia from the nematode. Results obtained from different replicates were reproducible and the method appeared very sensitive compared to other PCR protocols for Wolbachia detection. Real-time PCR is thus an appropriate method for investigations on the biological role of Wolbachia and on the implication of these bacteria in the pathogenesis of filariasis. With slight modifications of the primers and probe, the protocol we have developed could be applied in studies of the human pathogen Brugia malayi and on the model filarial species Litomosoides sigmodontis. 相似文献
16.
Efficient detachment and purification of bacterial cells associated with streambed sediments are required in order to quantify cell abundance and to assess community composition through the application of epifluorescence microscopy techniques. We applied chemical (i.e., sodium pyrophosphate and polysorbate) and physical treatments (i.e., shaking and sonication), followed by Nycodenz density gradient centrifugation to efficiently recover benthic bacteria. This procedure resulted in a highly purified cell suspension allowing for a precise cell quantification through the application of fluorescent dyes. About 93% of total cells were recovered from the original sediment, with higher recovery from the finer grain-size class (90%) in comparison to the coarse fraction (69%). The potential damaging effects of the applied procedures on cell integrity were assessed on planktonic bacteria in a pre-filtered water control. As a consequence of the high purity of the extracted bacteria, flow cytometry was successfully applied as counting method for sediment cell suspension. However, a significant decrease of protein synthesis in purified samples was measured by estimating the (3)H-Leucine incorporation rates, rising uncertainties on the possibility to apply potential metabolic assays after Nycodenz purification. 相似文献
17.
R. Zuriani S. Vigneswari M. N. M. Azizan M. I. A. Majid A. A. Amirul 《Biotechnology and Bioprocess Engineering》2013,18(3):472-478
A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production. 相似文献
18.
Gurdeep Rastogi 《Journal of microbiological methods》2010,83(2):127-132
A major obstacle in the culture-independent estimation of the abundance of bacteria associated with plants is contamination with plant organelles, which precludes the use of universal rRNA bacterial primers in quantitative PCR applications. We present here a PCR-based method that allows a priori determination of the degree of chloroplast and mitochondrial contamination in DNA samples from plant environments. It is based on differential digestibility of chloroplast, mitochondrial and bacterial small subunit rRNA gene amplicons with the restriction enzymes AfeI and BbvCI. Using this method, we demonstrated for field-grown lettuce plants that even a gentle washing protocol, designed to recover the microbial community and its metagenome from the leaf surface, resulted in substantial contamination with chloroplast DNA. This finding cautions against the use of universal primer pairs that do not exclude chloroplast DNA from amplification, because they risk overestimation of bacterial population sizes. In contrast, contamination with mitochondrial 18S rRNA was minor in the lettuce phyllosphere. These findings were confirmed by real-time PCR using primer sets specific for small subunit rRNA genes from bacteria, chloroplasts, and mitochondria. Based on these results, we propose two primer pairs (534f/783r and mito1345f/mito1430r) which between them offer an indirect means of faithfully estimating bacterial abundances on plants, by deduction of the mito1345f/mito1430r-based mitochondrial count from that obtained with 534f/783r, which amplifies both bacterial and mitochondrial DNA but excludes chloroplast. In this manner, we estimated the number of total bacteria on most leaves of field-grown lettuce to be between 105 and 106 g− 1 of leaf, which was 1-3 orders of magnitudes higher than the number of colony-forming units that were retrieved from the same leaf surfaces on agar plates. 相似文献
19.
Tolivia J Navarro A del Valle E Perez C Ordoñez C Martínez E 《Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology》2006,28(1):43-53
OBJECTIVE: To describe a simple method to achieve the differential selection and subsequent quantification of the strength signal using only one section. STUDY DESIGN: Several methods for performing quantitative histochemistry, immunocytochemistry or hybridocytochemistry, without use of specific commercial image analysis systems, rely on pixel-counting algorithms, which do not provide information on the amount of chromogen present in the section. Other techniques use complex algorithms to calculate the cumulative signal strength using two consecutive sections. To separate the chromogen signal we used the "Color range" option of the Adobe Photoshop program, which provides a specific file for a particular chromogen selection that could be applied on similar sections. The measurement of the chromogen signal strength of the specific staining is achieved with the Scion Image software program. CONCLUSION: The method described in this paper can also be applied to simultaneous detection of different signals on the same section or different parameters (area of particles, number of particles, etc.) when the "Analyze particles" tool of the Scion program is used. 相似文献
20.
Yasuaki Ogikubo Mari Norimatsu Ken Noda Junkichi Takahashi Miho Inotsume Masakazu Tsuchiya Yutaka Tamura 《Biologicals》2004,32(2):88-93
We investigated the application of the bacterial endotoxin test for the quantification of the endotoxin contamination of various commercial porcine vaccines. In endotoxin-spiked samples, Freund's complete adjuvant and aluminum hydroxide gel adjuvant failed to interfere with the results of the endotoxin test, and both recovery ratios were within the permissible range mentioned in the Japanese Pharmacopoeia. At the various dilutions tested, none of the adjuvants in commercial porcine vaccines caused noteworthy interference in the test. In addition, none of the 39 samples of porcine vaccines approved in Japan induced an interfering effect in the endotoxin test. Our findings suggest that the bacterial endotoxin test using endotoxin-specific Limulus amoebocyte lysate (LAL) can detect endotoxin contamination in commercial porcine vaccines containing either oil or aluminum adjuvants. 相似文献