首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
By using a model of immature porcine Leydig and Sertoli cells cultured in serum free defined medium, we evidenced a paracrine control of Leydig cell steroidogenic activity by Sertoli cells via a secreted inhibiting protein(s). This protein(s), partially purified using gel filtration (M.W. 20,000-30,000) suppresses the steroidogenic responsiveness to LH/hCG by decreasing the specific LH/hCG binding (52% decrease) and hormone steroid biosynthesis (73% decrease) at a level(s) located between cAMP production and pregnenolone formation. The suppression of this inhibitor(s) by FSH, in a dose dependent manner, is one mechanism by which FSH "sensitizes" Leydig cell response to LH/hCG stimulation.  相似文献   

2.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

3.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

4.
Ovine LH is needed for differentiation of juvenile Leydig cells and for their maintenance and steroidogenic potential, while FSH is necessary for Sertoli cell activity and spermatogonial multiplication suggesting that LH is steroidogenic hormone and FSH is gametogenic in the developing pigeon, C. livia. Homoplastic pituitary extract is more potent than ovine LH + FSH in stimulating gametogenic and endocrine components of the developing testis.  相似文献   

5.
6.
The aim of this study is to examine the influence of Sertoli cells on LH binding to Leydig cells in culture in immature mice. Leydig cells and Sertoli cells were obtained from the testes of immature C57BL/6Ncrj mice and were cultured in serum-free medium for 7 days. The LH binding to Leydig cells and the FSH binding to Sertoli cells were dependent on incubation time, the number of cells, and the amount of labelled hormone added. The dissociation constant for LH binding to Leydig cells was 7.3 x 10(-10) M. Co-culture of Leydig cells with Sertoli cells for 7 days decreased LH binding to Leydig cells. The binding was 34.9% of that to Leydig cells cultured alone. After cultivation of Leydig cells with spent Sertoli cell-cultured medium (SM) for the last 4 days of the 7-day culture period, LH binding to Leydig cells decreased to as low as 17.4% of that of the controls. For the controls, LH binding was measured in Leydig cells cultured in spent Leydig cell-cultured medium (LM). There was no difference between SM- and LM-cultures in the final survival rate or the percentage of cells showing histochemically demonstrated 3 beta-hydroxysteroid dehydrogenase activity. These data suggest that some factor or factors are secreted from the cultured Sertoli cells and inhibit the binding of LH to Leydig cells in culture.  相似文献   

7.
The effects of follicular stimulating hormone (FSH) on testicular steroidogenic activity has been studied by testing the capacity of conditioned medium (CM) by both unstimulated (control) Sertoli cells (C-CM) and FSH stimulated Sertoli cells (FSH-CM) to influence porcine cultured Leydig cell activity. Leydig cells cultured in FSH-CM for 48 hrs, as compared to C-CM, show a significant (P less than 0.05) increase in [125I]-hCG binding (150% +/- 4) and hCG-stimulated testosterone (T) secretion (266% +/- 42). In addition, the stimulating effect of FSH-CM on Leydig cell function as compared to C-CM, is trypsin sensitive, non dialyzable, heat stable, acid resistant and is chromatographed following gel filtration (Sephadex G 100) into two different peaks of activity. These data suggest that FSH regulates Leydig cell function via (at least two types of) Sertoli cell secreted proteins.  相似文献   

8.
The pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) regulate steroidogenesis and spermatogenesis by activating receptors expressed by Leydig cells (LH receptor) and Sertoli cells (FSH receptor), respectively. This concept is also valid in fish, although the piscine receptors may be less discriminatory than their mammalian counterparts. The main biological activity of LH is to regulate Leydig-cell steroid production. Steroidogenesis is moreover modulated in an autoregulatory manner by androgens. The male sex steroids (testosterone in higher vertebrates, 11-ketotestosterone in fish) are required for spermatogenesis, but their mode of action has remained obscure. While piscine FSH also appears to have steroidogenic activity, specific roles have not been described yet in the testis. The feedback of androgens on gonadotrophs presents a complex pattern. Aromatizable androgens/estrogens stimulate LH synthesis in juvenile fish; this effect fades out during maturation. This positive feedback on LH synthesis is balanced by a negative feedback on LH release, which may involve GnRH neurones. While the role of GnRH as LH secretagogue is evident, we have found no indication in adult male African catfish for a direct, GnRH-mediated stimulation of LH synthesis. The limited available information at present precludes a generalized view on the testicular feedback on FSH.  相似文献   

9.
Summary Interactions between Leydig and Sertoli cells, as well as a stimulatory effect of FSH on Leydig cell activity, have been reported in many studies. In order to investigate these interactions, the ultrastructure of immature pig Leydig cells under different culture conditions has been studied. When cultured alone in a chemically defined medium, there is a marked regression of the Leydig cell smooth endoplasmic reticulum and a swelling of the mitochondria. Addition of FSH or hCG does not prevent these phenomena. Co-culturing of Leydig cells with Sertoli cells from the same animal maintains the smooth endoplasmic reticulum at the level seen in vivo and in freshly isolated Leydig cells. The addition of FSH to the co-culture stimulates its development and increases Leydig cell activity, as assessed by an increase in hCG binding sites and an increased steroidogenic response to hCG. These results suggest that Sertoli cells exert a trophic effect on Leydig cells, and that the stimulatory effect of FSH on Leydig cell function is mediated via the Sertoli cells. These results reinforce the concept of a local regulatory control of Leydig cell steroidogenesis.Post-Doctoral fellow supported by CIRIT, Generalitat de Catalunya, Spain  相似文献   

10.
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.  相似文献   

11.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

12.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

13.
The aromatization of testosterone into 17 beta-estradiol (E2) was assessed in purified Leydig and Sertoli cells from rats aged 10-80 days. E2 was identified by gas chromatography-mass spectrometry (GC-MS) and measured both by radioimmunoassay (RIA) and GC-MS associated with stable isotope dilution. A potent competitive inhibitor of the aromatase activity, 4-hydroxyandrostenedione (4-OH-A) was used to test the enzymatic specificity. The basal aromatase activity was present in both cell types whatever the age of the animals. The basal E2 levels did not vary in Sertoli cells while a gradual increase was noted in Leydig cells until day 40, followed by a slight decrease in mature rats. In 10-day old animals, the aromatase activity was localized in Sertoli cells and highly stimulated by FSH; on day 20, both Sertoli and Leydig cells synthesized E2 although E2 from Sertoli cell origin was still predominant. Starting on day 20 until adulthood, the aromatase activity was under LH control in Leydig cells with a maximum around 40 days. The FSH and LH effects were mediated by cyclic AMP.  相似文献   

14.
When Sertoli cells were cultured in the presence of follicle-stimulating hormone (FSH), a time-and concentration-dependent desensitization of FSH-responsive adenylyl cyclase (AC) was observed. Maximal desensitization (80%) was attained after 6-9 h of incubation with FSH (10 micrograms/ml; NIH-FSH-S12). During 24 h of incubation the concentration of FSH causing a half-maximal desensitization was about 100 ng/ml. Removal of the hormone from the culture medium was associated with a gradual reappearance of the FSH response. Follicle-stimulating hormone-induced desensitization of Sertoli cell AC was specific for homologous hormone, since AC activation by isoproterenol was unaffected. Furthermore, AC activity of control and FSH-desensitized cells was equally activated by GTP and fluoride, showing that the interaction of the guanyl nucleotide regulatory (N) component with the catalytic subunit is not affected during FSH-induced desensitization. A loss in specific FSH binding was detected after 9 and 24 h of exposure to FSH, but not at shorter times of incubation. Desensitization of Sertoli cell AC to both FSH and isoproterenol stimulation could also be achieved by dibutyryl cyclic AMP (dbcAMP); however, a 30-40% desensitization required a high nucleotide concentration (1 mM) and a long incubation time (24 h). These results show that desensitization of Sertoli cell AC by FSH is associated with normal function of the N component, and precedes any significant loss in specific FSH binding sites. Furthermore, exogenous addition of dbcAMP (1 mM) did not cause the same effects on Sertoli cell AC as did FSH.  相似文献   

15.
There is increasing evidence that factors derived from the seminiferous tubules influence Leydig cell function in a paracrine way. In previous experiments we demonstrated that conditioned media from Sertoli cell-enriched cultures contain a protein with stimulatory activity on prepubertal rat Leydig cells. In this paper we further studied the specificity of this factor. In addition we describe a simple but efficient partial purification procedure. It is demonstrated that Sertoli cell conditioned media contain a factor that stimulates the testosterone output from prepubertal and adult Leydig cells. The effects are evident within the first hour of incubation and can be observed in the presence as well as in the absence of LH. Peritubular cells do not produce a similar factor but enhance the production of the Leydig cell stimulating factor when cocultured with Sertoli cells. The Sertoli cell factor acts on rat as well as on mouse Leydig cells. It barely influences the adrenostenedione output of ovarian stromal cells or the corticosterone output of adrenal cells. The production of this factor is enhanced by dbcAMP, FSH, L-isoproterenol and glucagon but is not affected by androgens. The characteristics of the Sertoli cell factor have been compared with those of a Leydig cell stimulating factor in the medium from an established rabbit kidney cell line: RK13. It is shown that the active principle in RK13 conditioned medium is also a thermolabile trypsin-sensitive protein with a mol. wt of more than 10,000. Nonetheless, the RK13 and Sertoli cell derived factors act by different mechanisms since at maximally effective concentrations their effects are additive. Finally it is demonstrated that molecular weight fractionation of Sertoli cell conditioned medium using an Amicon ultrafiltration system results in a 50- to 130-fold increase in Sertoli cell factor activity in a fraction corresponding to a mol. wt of 10,000 up to 30,000.  相似文献   

16.
The stimulatory effects of follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor I (IGF-I) on lactate production and hexose uptake by Sertoli cells from immature rats were studied. The time-courses and the maximal stimulatory effects of FSH, insulin, and IGF-I on lactate production were virtually identical. When Sertoli cells were incubated in the presence of FSH in combination with insulin or IGF-I (submaximal doses), additive but no pronounced synergistic effects were observed. The stimulatory effects of FSH and insulin were not dependent on the presence of extracellular calcium. 2-Deoxy-D-glucose (2-DOG), an analogue of D-glucose, was used to investigate the hexose transport system of Sertoli cells. Uptake of 2-DOG was linear in time and virtually all of the intracellular 2-DOG was phosphorylated up to 30 min of incubation; 2-DOG uptake was inhibited by cytochalasin B, but not by cytochalasin E. D-glucose, but not D-galactose, appeared to be an effective competitor of 2-DOG uptake. The Km of 2-DOG uptake was not influenced by FSH, insulin, and IGF-I. FSH had no effect on the Vmax of 2-DOG uptake, whereas insulin and IGF-I caused a 30% stimulation of the Vmax. It is concluded that FSH, insulin, and IGF-I stimulate lactate production by cultured Sertoli cells, but that only insulin and IGF-I stimulate hexose transport. The insulin-like effect of FSH on Sertoli cells may principally involve stimulation of glycolytic enzyme activities.  相似文献   

17.
Germ cells and Sertoli and Leydig cell functions were studied from 7 to 180 days after an acute exposure of 2-month-old rat testes to 9 Gy of gamma rays. Body weight, testis and epididymal weights were recorded. Sertoli cell parameters (androgen-binding protein, ABP, in caput epididymis and plasma follicle stimulating hormone, FSH) and Leydig cell parameters (plasma luteinizing hormone, LH, testosterone and prostate and seminal vesicle weights) were determined together with the number of germ cells and Sertoli cells. Irradiation did not affect body weight but significantly reduced testicular and epididymal weights from day 7 and day 15 post-irradiation respectively. The cells killed by irradiation were mainly spermatogonia and preleptotene spermatocytes engaged in replicating their DNA at the time of exposure, but all spermatocytes seemed damaged as they gave abnormal descendent cells. By day 34, only elongated spermatids remained in a few tubules and thereafter very little regeneration of the seminiferous epithelium occurred, except for one rat which showed a better regeneration. Levels of ABP decreased by day 15 when the germ cell depletion had reached the pachytene spermatocytes, whereas FSH and LH levels rose when the number of elongated spermatids decreased. Levels of testosterone and the weight of the seminal vesicles did not change; occasionally, the prostate weight was slightly reduced. These results support our hypothesis that pachytene spermatocytes and elongated spermatids are involved in influencing some aspects of Sertoli cell function in the adult rat.  相似文献   

18.
Donkey gonadotropins (donkey luteinizing hormone, dLH; donkey follicle-stimulating hormone, dFSH) have been isolated in purified form from 191 donkey pituitaries using essentially the same procedures previously employed for the purification of equine gonadotropins. Chemically, dLH and dFSH were observed to be similar to equine LH (eLH) and FSH (eFSH) in fractionation behavior and glycoprotein nature. Two forms of the dFSH molecule were observed, as is the case for eFSH. Donkey LH had significantly less total carbohydrate (13.5%) and sialic acid (1.9%) than eLH (26.7% and 5.8%, respectively). Carbohydrate (17-21%) and sialic acid (2.4%) content of the two dFSH preparations closely resembled that of eFSH. A slightly higher tyrosine content in the donkey gonadotropins was noted in a comparison of amino acid compositions. Immunologically, in a heterologous FSH radioimmunoassay (RIA), dFSH preparations were equal to or twice as active as eFSH preparations. However, in homologous RIAs for equine chorionic gonadotropin (eCG), eFSH and eLH, both the dLH and dFSH preparations were considerably less active than the equine gonadotropins, and their inhibition curves were all nonparallel. Biologically, in the Steelman-Pohley assay both dFSH preparations were equipotent and as potent as eFSH (approximately 40 times NIH-FSH-S12). In the Sertoli cell assay for cAMP (FSH assay) and the Leydig cell assay for testosterone (LH assay), both dFSH and dLH were 2- or 6-fold more active than eFSH and eLH, respectively. In rat and equine testis FSH homologous radioreceptor assays, dFSH preparations were as active and up to 6-fold more active than eFSH. In contrast, dLH was 10-fold less active than eLH in the equine LH homologous radioreceptor assay. Unlike eLH, dLH was found to possess little intrinsic FSH activity or FSH inhibitory activity, and the small amount of FSH activity observed was most likely due to FSH contamination. Therefore, eLH behaves much like eCG (pregnant mare's serum gonadotropin, PMSG) which also possesses both LH and FSH activity. In contrast, dLH behaves more like donkey chorionic gonadotropin (dCG) which possesses only a low degree of FSH activity.  相似文献   

19.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

20.
Addition of concentrated rat Sertoli cell conditioned medium (rSCCM) to isolated Leydig cells from immature rats stimulated steroid production more than 13-fold within 4 h. LH-stimulated steroidogenesis was not enhanced by addition of rSCCM. The biological activity of the concentrated rSCCM was higher after incubation of Sertoli cells with FSH, whereas FSH alone did not stimulate steroid production. This effect of rSCCM was not due to inhibin, since highly purified 32 kDa rat inhibin, in doses equivalent to those present in rSCCM, had no effect on steroidogenesis during the 4 h incubation period. Furthermore, inhibin could be separated from the Leydig cell stimulating factor by anion-exchange chromatography. These results indicate a short-term paracrine control of Leydig cell steroidogenesis by Sertoli cell derived factors, which differ from inhibin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号