首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of the protease inhibitors phenylmethyl-sulfonyl fluoride and N-tosyl- -phenylalanine chloromethyl ketone, prostacyclin (PGI2) production by rat liver cells treated with epidermal growth factor, platelet-activating factor, 12-O-tetradecanoylphorbol-13-acetate (TPA), and TPA-type tumor promoters (teleocidin and aplysiatoxin) or 1-oleoyl-2-acetylglycerol is amplified. The PGI2 production stimulated by thapsigargin or exogenous arachidonic acid is not amplified. N-Tosyl- -phenylalanine chloromethyl ketone also amplifies TPA's release of radioactivity from cells isotopically labeled with [3H]arachidonic acid. Indomethacin inhibits the amplification of PGI2 production but not the release of radioactivity. The presence of the protease inhibitors is not required for the amplification of PGI2 production. Prior incubation of the cells with these inhibitors, followed by their removal, still results in amplified PGI2 production by cells subsequently treated with TPA, 1-oleoyl-2-acetylglycerol, or platelet-activating factor but not that stimulated by exogenous arachidonic acid. While phenylmethyl-sulfonyl fluoride's amplification of PGI2 production by cells treated with TPA was blocked by prior incubation with TPA for 20 h, a similar block of amplification in EGF-treated cells was not observed.  相似文献   

2.
Staurosporine and K-252a, known inhibitors of several protein kinases, stimulated PGI2 production (measured as 6-keto-PGF in rat liver cells (the C-9 cell line). Preincubation of the rat liver cells with staurosporine or K-252a enhanced the PGI2 production stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), platelet activating factor (PAF) and the Ca2+-ionophore a-23187, but not the PGI2 synthesis stimulated by exogeneous arachidonic acid. These results suggest that phosphorylation of some proteins or certain amino acids on a protein can regulate arachidonic acid metabolism probably in the pathway leading to deesterification of phospholipids.  相似文献   

3.
Leukotriene C4 (LTC4) and, to a lesser extent, leukotriene D4 (LTD4) concentration dependently stimulate prostacyclin (PGI2) biosynthesis in cultured human umbilical vein endothelial cells. PGI2 biosynthesis was quantitated by radioimmunoassay and its structure confirmed by gas chromatography/mass spectrometry. Preincubation of endothelial cells with LTC4 resulted in desensitization to subsequent LTC4 stimulation. However, PGI2 biosynthesis in response to thrombin, PGH2 and arachidonic acid was not inhibited by preincubation with LTC4. The C-6-sulfidopeptide leukotriene receptor level antagonist FPL-55712 attenuates LTC4, but not thrombin-stimulated PGI2 biosynthesis. These data suggest that human umbilical vein endothelial cells have a C-6-sulfidopeptide leukotriene receptor, and that stimulation of this receptor results in PGI2 biosynthesis.  相似文献   

4.
Agonist-specific desensitization of prostaglandin I2-stimulated (PGI2)1 adenosine 3′:5′-monophosphate (cyclic AMP) accumulation can be demonstrated in intact human foreskin fibroblasts (HFF) following a single exposure to PGE1 or a stable PGI2 analog (nitrilo-PGI2). A single PGI2-stimulation of HFF cells does not result in desensitization. Continuous re-addition of PGI2 over a 4 hr period does induce desensitization to subsequent PGI2-stimulation. HFF cells that are desensitized to PGI2 are also desensitized to PGE1 or nitrilo-PGI2 stimulation indicating that these agonists share a common adenylate cyclase complex. Desensitization to PGI2 can be measured after a 60 min, but not after a 30 min, exposure to PGE1 or nitrilo-PGI2. Once HFF cells are desensitized, a 12–24 hr period is required for the recovery of PGI2 sensitivity.The adenylate cyclase in membranes prepared from intact cells that were preincubated with PGE1 is also desensitized to subsequent PGI2-stimulation. Preincubation of cells with PGI2 does not induce desensitization of PGI2-stimulated adenylate cyclase. These data suggest that HFF cells must be constantly exposed to a biologically active prostaglandin for desensitization to occur. The intrinsic chemical lability of PGI2 may be a biochemical protection mechanism against desensitization in cells that normally respond to PGI2.  相似文献   

5.
Isolated rat aortae were incubated at 22°C in tris-buffered saline (pH 7.4). The incubation medium was changed every 10 min, and the amounts of prostacyclin (PGI2) in the medium were immediately bioassayed as an inhibitory activity against rabbit platelet aggregation induced by ADP. The addition of arachidonic acid to the medium increased the generation of PGI2 but this was followed by a gradual decrease even in the presence of the same amount of arachidonic acid. The decrease of PGI2 generation from exogenous arachidonic acid was prevented by tryptophan, which is required by PG hydroperoxidase with heme compound as cofactors. MK-447 and its analogues, which are phenolic compounds and exerted tryptophan-like action on the PG endoproxide biosynthesis by bovine seminal vesicle microsomes, also prevented the decrease of PGI2 generation in isolated rat aortae. The phenolic compounds enhanced PGI2 generation from endogenous arachidonic acid. These results indicate that theh phenolic compounds enhanced PGI2 generation in vascular tissue, acting as a tryptophan-like cofactor of PG hydroperoxidase.  相似文献   

6.
Histamine stimulates the production of prostacyclin (PGI2) in cultured human endothelial cells. We have examined the cell specificity of histamine-mediated PGI2 synthesis in primary and subcultured human cells. Venous and arterial smooth muscle cells and skin fibroblasts synthesized PGI2 from exogenous arachidonic acid, but they did not synthesize a significant amount of PGI2 when treated with histamine. Endothelial cells, however, produced similar amounts of PGI2 in response to histamine and arachidonic acid. Thrombin also stimulates PGI2 production in endothelial cells. Histamine and thrombin yielded an additive production of PGI2 when added simultaneously to endothelial cells. When histamine and thrombin were added sequentially, the amount of PGI2 produced was not additive but equaled the amount characteristic of the first agonist alone. Following an initial treatment with histamine, endothelial cells were unable to respond to histamine for 3 hr, after which the PGI2 biosynthetic response rapidly returned to normal by 412 hr. When the initial histamine treatment was carried out under mildly alkaline conditions, the complete return of activity was delayed to 8 hr after treatment. The synthesis of PGI2 from exogenous arachidonic acid was unaffected by prior treatment with histamine. Recovery of histamine-mediated PGI2 production was not dependent on protein synthesis but required a component of fetal calf serum that is nondialyzable and moderately heat stable. Thus endothelial cell PGI2 synthesis in response to a physiologic agonist is subject to several levels of regulation, reflecting not only intracellular events but also the extracellular environment.  相似文献   

7.
L Levine 《Prostaglandins》1991,41(6):615-624
Preincubation of rat liver cells (the C-9 cell line) with okadaic acid (0.6 microM), a known inhibitor of protein-serine/threonine phosphate phosphatases 2A and 1, for 30 min amplified 6-keto-PGF1 alpha production stimulated by thapsigargin, thrombin, platelet activating factor (PAF), 12-O-tetradecanoylphorbol-13-acetate (TPA), the Ca2+ ionophore A-23187 and lysine-vasopressin (Lys.ADH) but not that stimulated by exogenous arachidonic acid. The amplification occurred within minutes after addition of the stimulators. The effect of preincubation was time dependent. Preincubation of the cells with okadaic acid (0.6 microM) for longer than 30 min decreased this amplification. The results suggest that inhibition of protein-serine/threonine phosphate phosphatase(s) can both positively and negatively regulate deesterification of phospholipids although the negative regulation may reflect a toxic response. Microcystin LR and nodularin, inhibitors of protein-serine/threonine phosphate phosphatases 2A and 1 in vitro, did not amplify 6-keto-PGF1 alpha production by PAF when incubated with intact cells.  相似文献   

8.
Prolonged incubation of quiescent 3T3, 3T6, and A431 cells with the P2Y purinoceptor agonists ATP, ADP, or AMPPNP reduced the mitogenic responses of target cells to a further challenge by these agonists, as measured by [3H]thymidine incorporation. The mitogenic desensitization was agonist-specific, for no effect was seen on DNA synthesis stimulated by epidermal growth factor, insulin, bombesin, 12-0-tetradecanoyl-phorbol-12 acetate (TPA), or adenosine. The desensitization was completely reversible, since after a 24 hr incubation in the absence of ATP, the cells responded fully to the mitogenic action of ATP. The presence of a low level of cycloheximide blocked recovery, suggesting that down-regulation of the P2Y receptor may have occurred during desensitization. In Swiss 3T3 cells, stimulation of DNA synthesis occurs predominantly by activation of arachidonic acid release, followed by its oxidation to prostaglandin E2 and stimulation of adenylyl cyclase. Interestingly, prolonged preincubation with ATP produced a similar degree of desensitization of DNA synthesis and of ATP-dependent arachidonic acid release and cAMP accumulation. Furthermore, this was true for both wild type cells and mutants with a defective cAMP-dependent protein kinase (PKA). We conclude that homologous desensitization is likely due to uncoupling of the P2Y purinoceptor from phospholipase A2, and this process does not require activation of protein kinase A. © 1995 Wiley-Liss Inc.  相似文献   

9.
Cultured pulmonary artery endothelial cells produce PGI2 as their primary prostaglandin. Conditions which inhibit cell division have been shown to accelerate the synthesis of this compound. Exposure of endothelial cells to γ raidation results in an irreversible cessation of growth and enhanced production of PGI2. The level of PGI2 measured after radiation exposure exceeds that observed in cultures rendered quiescent by serum reduction. This indicates a role for γ radiation in the elevation of PGI2 levels which is distinct from its effect on cell division. Result presented indicate that exposure to γ radiation does not, in and of itself, elevate PG levels but capacitates cells for enhanced production when presented with appropriate stimuli. Increased PGI2 synthesis appears to be a result of an observed increase in arachidonic acid release and an activation of cyclooxygenase.  相似文献   

10.
To determine the effects of AA-861 on PGI2 production in guinea-pig lungs, 3 g of guinea-pig lung was chopped in 4 ml of buffer (control group), in buffer with 4 μg/ml indomethacin (indomethacin group) and in buffer with 2.5 × 10−5M AA-861 (AA-861 group). The chopped lungs were incubated for 30 min. 250 μl of incubation medium from each group was assessed before and after 3, 5, 10, 15, 20, 25 and 30 min of incubation. The incubation medium was centrifuged and the supernatant was tested for a PGI2-like substance (PGI2) by platelet aggregation inhibition. PGI2 was produced mainly during the initial 3–5 min of incubation and was decreased thereafter. PGI2 production was almost completely inhibited in the indomethacin group at all of the incubation times and was partially inhibited in the AA-861 group during the initial 3–5 minutes. Endogenous 5-lipoxygenase products generated in the early stages of incubation seem to be involved in PGI2 production in guinea-pig lungs.  相似文献   

11.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

12.
Interleukin-6 (IL-6) is a cytokine involved in the differentiation of B-cells to antibody secreting plasma cells, the activation of T-cells, and the stimulation of hepatocyte production of acute phase proteins. Because of the pro-inflammatory effects of this cytokine, we investigated the ability of the fatty acid arachidonic acid (AA) to regulate the release of IL-6 from rat resident peritoneal macrophages (Mø) in vitro. AA (0.5–16 μM) stimulated IL-6 release during a 4 h incubation period in a biphasic manner, with 4 μM AA generating a peak of IL-6 release (3-5-fold). AA (0.5–16 μM) also induced an increasing release of the AA metabolite thromboxane B2 (TXB2). The AA-induced release of IL-6 occurred within 1–2 h of incubation, whereas TXB2 concentrations were elevated within 5 min of AA treatment. The TX synthetase inhibitor CGS 12970 (4.0 μM and 40.0 μM) effectively blocked the generation of TXB2, but increased prostacyclin (PGI2) generation and potentiated the release of IL-6. In addition, PGI2, as well as the PGI2 agonists iloprost and cicaprost, stimulated IL-6 release from Mø by greater than 5-fold over vehicle-treated basal levels. These data suggest that PGI2 (but not TXA2) is involved in AA-induced IL-6 release from peritoneal Mø.  相似文献   

13.
Preincubation of rat liver cells (the C-9 cell line) for 25 min with phenylarsine oxide at levels ranging from 0.06 to 0.6 microM amplifies prostaglandin I2 production when subsequently stimulated by platelet activating factor, lysine vasopressin, bradykinin, thapsigargin, and the Ca2+ ionophore, A-23187, but not that stimulated by exogenous arachidonic acid. The amplification is decreased after preincubation for 25 min with 1.8 microM phenylarsine oxide. Preincubation of mouse lymphoma cells (the WEHI-3 cell line) with phenylarsine oxide at levels ranging from 0.06 to 1.8 microM for 60 min does not affect prostaglandin E2 levels but inhibits leukotriene B4 and C4 production stimulated by the Ca(2+)-ionophore, A-23187. Amplification of prostaglandin production by phenylarsine oxide is reversed 100 times more effectively by 2,3-dimercaptopropanol than by 2-mercaptoethanol. Deesterification of lipids appears to be regulated positively in rat liver cells and leukotriene production negatively in mouse lymphoma cells by phosphorylation of tyrosine.  相似文献   

14.
To elucidate the role of prostaglandins in adrenal steroidogenesis, we studied aldosterone and corticosterone responses to
of prostaglandin E2 (PGE2), prostaglandin F (PGF), prostacyclin (PGI2), and arachidonic acid (AA) in collagenase dispersed rat adrenal capsular and decapsular cells. Whereas adrenocorticotrophic hormone (ACTH) and angiotensin II (AII) stimulated aldosterone production in capsular cells and ACTH stimulated corticosterone production in decapsular cells in a dose dependent fashion, aldosterone and corticosterone production were not stimulated significantly by PGE2, PGF, PGI2, and AA. Although preincubation of dispersed adrenal cells with indomethacin ( ) markedly inhibited PGE2 synthesis, ACTH- and AII-stimulated aldosterone production and ACTH-stimulated corticosterone production were not attenuated despite prostaglandin blockade. These results indicate that prostaglandins are unlikely to play an important role in adrenal steroidogenesis.  相似文献   

15.
A highly purified ethyl ester of EPA (EPAEE) (74%) was manufactured from sardine oil. Sixty mg/kg/day of EPAEE was given orally to male Wishar rats for 8 weeks. No side effect or toxicity from the administration of EPAEE was observed. Plasma EPA concentration and the ratio of EPA to arachidonic acid were significantly increased, compared with control Wistar rats. An enhancement of PGI2-like substance production by aortas obtained from rats fed EPAEE was noted. Conversion of EPA to Λ17-6-keto-PGF, a stable metabolite of PGI3, could not be detected by an incubation study of 14C-EPA and aortas either from rats fed EPAEE or from control rats. Therefore, PGI2-like substance produced by rat aorta is most likely to be PGI2. itself and not PGI3.  相似文献   

16.
Indomethacin-treated bovine iris-ciliary body microsomes (IBIM) have been studied for their ability to convert PG endoperoxides into either thromboxance-A2 (TxA2)-like or prostacyclin (PGI2)-like activity. The biological activity of the ocular tissue microsomes were compared with either indomethacin-treated human platelet microsomes (for TxA2-like activity) or rabbit aorta microsomes (for PGI2-like activity) under appropriate incubation conditions. No evidence could be found for the formation of TxA2-like activity from PG endoperoxides by the IBIM. In contrasts, when the IBIM were incubated with PGH2 for 1 min at 22°C without cofactors, PGI2-like activity was produced, causing profound relaxation of the isolated dog coronary artery preparation without contracting the rabbit aorta and inhibiting arachidonic acid-induced platelet aggregation. Equivalent quantities of boiled IBIM failed to aleter the biological activity of PGH2 under identical conditions. Tranylcypromine (500 μg/ml) completely abolished the appearance of PGI2-like activity. Furthermore, the PGI2-like activity found was stable for 10 min at 22°C at pH 8.5 but completely lost under similar conditions at pH 5.5. It is concluded than microsomal preparations of normal bovine iris-ciliary body can synthesize PGI2-like activity in substantial amounts but not TxA2-like activity.  相似文献   

17.
We evaluated the effect of interleukin-6 (IL-6) on the production of prostacyclin (PGI2) by cultured human pulmonary artery smooth muscle cells (HPASMC). Incubation of these cells for up to 48 h with IL-6 led to a dose- and time-dependent decrease in the concentration of PGI2 in the culture medium. The incubation of HPASMC with 10 μg/ml of lipopolysaccharide (LPS), 200 U/ml of IL-1β or 500 U/ml of TNFα for 24 hr significantly increased the concentration of PGI2 in the medium. However, the addition of IL-6 to a medium containing LPS, IL-1β, or TNFα significantly inhibited the stimulatory effect of those substances on PGI2 production. Such inhibition was closely related to the concentration of IL-6. IL-6 may counteract the roles of LPS and of other cytokines on the regulation of pulmonary vascular tension in endotoxin- and cytokine-mediated disorders such as sepsis and the acute respiratory distress syndrome (ARDS).  相似文献   

18.
Human arterial and venous segments from patients under-going operations when incubated in Tris buffer both alone and with arachidonic acid were able to produce thromboxane B2 (assessed by radioimmunoassay). Thromoboxane B2 (TxB2) production was progressive in time (till 40 min.) and was enhanced by the addition of 1mM norepinephrien. Contamination of tissues by platelet was checked and platelets did not contribute to thromboxane formation. The investigation of the conversions of 1-14C arachidonic acid by vascular tissue indicated that human vascular tissues produce the metabolites of the cyclooxygenase dependent pathway and that prostacyclin is the main metabolite with a PGI2/TxA2 ratio of 4:1. The arterial wall was found to posses an active lipoxygenase dependent pathway. Thromboxane production by intimal cells was neglible and the main source of thromboxane was the media. The production of thromboxane did not change in relation to age, but arterial segments from men produced significantly larger amounts of thromboxane than those from women.  相似文献   

19.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

20.
Aortae from fetal or 3 weeks old rats produced very small amounts of PGI2, prostacyclin. This production increased from 4 weeks on, reaching adult values at about ten weeks. This maturation seemed to be predominantly determined by a change in the PGI2 synthetase system, rather than in arachidonic acid availability, phospholipase or cyclo-oxygenase activity. The anti-oxidant ascorbic acid stimulated prostacyclin production more strongly in adult than in young rat aortae. This finding suggests that the lower production of PGI2 by young tissues is not due to an enhanced inhibition of prostacyclin synthetase by lipid peroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号