首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Ameba to flagellate transformation in Naegleria fowleri (Lovell strain) was affected by growth temperature, phase of growth, strain of ameba, culture agitation, enflagellation temperature, enflagellation diluent, and cell concentration. Amebae transformed best when they were grown without agitation and enflagellated with agitation. Regardless of growth temperature (23°, 30°, 37°, and 42°C were tested), amebae transformed best at 37°C. Enflagellation was greatest for cells harvested between 24 h (mid-exponential) and 84 h (late stationary) of growth.  相似文献   

2.
Proteomic profiling on Ecklonia cava Kjellman grown under various seawater temperatures was conducted to search for biomarkers that were useful to evaluate the health of the colonies and formulate actions for the maintenance of marine forests. In the cultivated strains, protein expression was not significantly changed when the cultivation temperature was lowered from 15°C (control) to 10°C. On the contrary, it was markedly changed, i.e., photosynthesis-related proteins were up-regulated and metabolic enzymes were down-regulated, when the temperature was heightened to 20°C. With the cultivation at 30°C, 25 spots within 27 spots expressed at this temperature peculiarly could be identified and classified into ten proteins. Of the distinctive 27 spots at 30°C, 20 spots were detected in the wild strains cultured at the same temperature for a brief time. It is presumed that the proteins including vanadium-dependent bromoperoxidase are heat stress-induced proteins.  相似文献   

3.
An Escherichia coli C600 mutant having an altered D-xylose uptake activity was isolated. The growth rate and D-xylose uptake activity of the mutant grown on the minimal medium with D-xylose at 25°C were much lower than those of the parental strain grown under the same conditions, although the activities of D-xylose-binding proteins and the enzymes involved in D-xylose metabolism were almost the same for the two strains. An uptake study on sugars at the low temperature (25°C) indicated that the mutant was deficient in D-xylose uptake activity. A gene responsible for the D-xylose uptake activity at the low temperature was isolated and cloned onto vector plasmid pBR322. The gene specifically improved the D-xylose uptake activity of the mutant at the low temperature when it was introduced into the mutant cells. Based on these results, it was suggested that another D-xylose transport system other than the D-xylose-binding protein mediated system might be functioning in E. coli cells.  相似文献   

4.
Streptococcus thermophilus is widely used in food fermentations; it commonly suffers diverse stress challenges during manufacturing. This study investigated the cold shock response of S. thermophilus when the cell culture temperature shifted from 42°C to 15°C or 20°C. The growth of cells was affected more drastically after cold shock at 15°C than at 20°C. The generation time was increased by a factor of 19 when the temperature was lowered from 42° to 20°C, and by a factor of 72 after a cold shock at 15°C. The two-dimensional electrophoretic protein patterns of S. thermophilus under cold shock conditions were compared with the reference protein pattern when cells were grown at optimal temperature. Two proteins of 21.5 and 7.5 kDa synthesized in response to cold shock were characterized. N-terminal sequencing and sequence homology searches have shown that the 7.5-kDa protein belonged to the family of the major cold shock proteins, while no homology was found for the new cold shock protein of 21.5 kDa. Received: 4 June 1999 / Accepted: 6 July 1999  相似文献   

5.
Studies of the marine green flagellate Dunaliella tertiolecta have confirmed and extended previous observations of Steemann Nielsen and his colleagues. Algae, grown at 12°C, assimilated carbon dioxide under light-saturated conditions more rapidly than did those grown at 20°C; for both, the assimilation rate being higher at 20°C than at 12°C. Cells grown at the lower temperature contained higher concentrations of soluble protein, higher activities of ribulose diphosphate carboxylase and showed an enhanced relative rate of protein synthesis during the photosynthetic assimilation of carbon dioxide. This appears to represent true adaptation since it allowed the growth rate at 12°C to be almost the same as that at 20°C. Studies of the marine diatom Phaeodactylum tricornutum have not revealed the same picture of temperature adaptation. Cultures grown at 5°C had significantly higher rates of photosynthesis than did those grown at 10°C, but the same was not true when algae grown at 10°C were compared with those grown at 20°C. In this organism, growth at the lower temperatures reduced its ability to photosynthesize at 20°C. Cells grown at the lower temperatures contained more protein than did those grown at 20°C; this was particularly marked in cells growing at 5°C, a temperature which reduced the growth rate. The relative rate of protein synthesis was higher in Phaeodactylum grown at lower temperatures; but this difference was most marked when the measurements were made at 20°C.  相似文献   

6.
7.
A psychrotolerant microbial consortium from a low-temperature anaerobic EGSB bioreactor was grown separately on acetate, propionate, butyrate, and H2/CO2 at 30 and 10°C in glass flasks. In the course of the experiments, the cultivation temperature was changed at different time intervals. The initial rates of substrate utilization were higher at 30 than at 10°C. However, the microbial consortium was found to be well adapted to low temperatures; when grown at 10°C for 1.5–5 months, the rates of butyrate, propionate, and H2/CO2 utilization increased steadily. When grown at 30°C for 1.5–2.5 months, this consortium retained its ability to degrade VFA and H2/CO2 at 10°C. However, after long-term (150 days) cultivation at 10°C, its ability to utilize the substrates at 30°C decreased. In the consortium grown in the acetate-containing medium, a Methanosaeta-like methanogen was predominant; in media with propionate and butyrate, besides VFA-degrading bacteria, acetoclastic Methanosaeta-like and hydrogenotrophic Methanospirillum-like methanogenic archaea prevailed. A Methanospirillum-like strain predominated in the H2/CO2-containing medium. The Methanospirillum strain of this microbial community was presumably psychrotolerant. A method based on changes in the cultivation temperature is of practical interest and can be used to start up new bioreactors.  相似文献   

8.
Cell-division-cycle, temperature-sensitive mutants of Saccharomyces cerevisiae were investigated as a means of altering the morphological characteristics and subsequent physical properties of single-cell protein (SCP). Strain 4471, harboring mutation cdc 4, formed a visible complex mass at the nonpermissive temperature, after being grown at 30°C and then transferred to 37°C for 8 hr. Microscopic observation showed that the mother cell was unable to complete the budding process at the nonpermissive temperature, which caused the cells to enlarge. Viscosity measurements were used to establish and characterize optimum morphological changes in the yeast. The Maximum increase in viscosity occurred when cells were incubated at 30°C and then shifted to 37°C for 8 hr. Strain 4471 exhibited yield stress, whereas A364A did not. Maximum change in yield stress occurred when cells were shifted from 30 to 37°C for 8 hr. No significant loss of protein or RNA occurred in strain 4471, as compared to strain A364A, when incubated at the nonpermissive temperature.  相似文献   

9.
This study aims at assessing the influence of Pseudomonas fluorescence cell morphology on the effectiveness and production of the lytic bacteriophage ϕIBB-PF7A. P. fluorescens were cultured as rods or as elongated cells by varying the temperature and rotary agitation conditions. Cells presented rod shape when grown at temperatures up to 25°C and also at 30°C under static conditions, and elongated morphology only at 30°C when cultures were grown under agitation. Elongated cells were 0.4 up to 27.9 μm longer than rod cells. Rod-shaped hosts were best infected by phages at 25°C which resulted in an 82% cell density reduction. Phage infection of elongated cells was successful, and the cell density reductions achieved was statistically similar (P > 0.05) to those obtained at the optimum growth temperature of P. fluorescens. Phage burst size varied with the cell growth conditions and was approximately 58 and 153 PFU per infected rod and elongated cells, grown at 160 rpm, at 25°C (the optimal temperature) and 30°C, respectively. Phage adsorption was faster to elongated cells, most likely due to the longer length of the host. The surface composition of rod and elongated cells is similar in terms of outer membrane proteins and lipopolysaccharide profiles. The results of this study suggest that the change of rod cells to an elongated morphology does not prevent cells from being attacked by phages and also does not impair the phage infection.  相似文献   

10.
We studied the utilization of protein-hydrolyzed sweet cheese whey as a medium for the production of β-galactosidase by the yeasts Kluyveromyces marxianus CBS 712 and CBS 6556. The conditions for growth were determined in shake cultures. The best growth occurred at pH 5.5 and 37°C. Strain CBS 6556 grew in cheese whey in natura, while strain CBS 712 needed cheese whey supplemented with yeast extract. Each yeast was grown in a bioreactor under these conditions. The strains produced equivalent amounts of β-galactosidase. To optimize the process, strain CBS 6556 was grown in concentrated cheese whey, resulting in a higher β-galactosidase production. The β-galactosidase produced by strain CBS 6556 produced maximum activity at 37°C, and had low stability at room temperature (30°C) as well as at a storage temperature of 4°C. At −4°C and −18°C, the enzyme maintained its activity for over 9 weeks. Received 20 January 1999/ Accepted in revised form 30 April 1999  相似文献   

11.
12.
ABSTRACT. When a streptomycin-bleached mutant of Euglena gracilis strain Z was cultured in the dark at 33, 26, or 15°C, the content of paramylon was higher at lower growing temperature while that of wax esters was higher at higher temperature. Transfer of the cells grown at 33°C–15°C decreased the wax ester content while increasing the paramylon content; transfer in the reverse direction caused reverse changes. On incubation with labeled acetate, the cells grown at 33°C showed more distribution of radioactivity in wax esters than the cells grown at lower temperatures. Apparently the two energy-reserve substances have different physiological functions.  相似文献   

13.
Amongst more than 1000 isolates collected in various cold environments, the strain Arthrobacter psychrolactophilus Sp 31.3 has been selected for its ability to grow and to produce exoenzymes at low temperatures, its inability to grow at 37°C, its non-halophilic character and its growth versatility on various media. This non-pathogenic strain displays a strong resistance to desiccation and storage at room temperature and is suitable for the production of freeze-dried bacterial starters. When grown in a synthetic wastewater at 10°C, the strain induces a complete clarification of the turbid medium and efficiently hydrolyses proteins, starch and lipids in the broth. Furthermore, this strain has a remarkable capacity to improve the biodegradability of organic compounds in wastewater as indicated by a BOD5/COD ratio of 0.7.  相似文献   

14.
Outdoor experiments carried out in Florence, Italy (latitude 43.8° N, longitude 11.3° E), using tubular photobioreactors have shown that in summer the average net productivity of a Spirulina platensis culture grown at the optimal temperature of 35 °C was superior by 23% to that observed in a culture grown at 25 °C. The rates of night biomass loss were higher in the culture grown at 25 °C (average 7.6% of total dry weight) than in the one grown at 35 °C (average 5%). Night biomass loss depended on the temperature and light irradiance at which the cultures were grown, since these factors influenced the biomass composition. A net increase in carbohydrate synthesis occurred when the culture was grown at a low biomass concentration under high light irradiance or at the suboptimal temperature of 25 °C. Excess carbohydrate synthesized during the day was only partially utilized for night protein synthesis.  相似文献   

15.
The performance of the photosynthetic apparatus was examined in the third leaves of Zea mays L. seedlings grown at near-optimal (25 °C) or at suboptimal (15 °C) temperature by measuring chlorophyll (ChI) a fluorescence parameters and oxygen evolution in different temperature and light conditions. In leaf tissue grown at 25 and 15 °C, the quantum yield of PSII electron transport (ψPSII) and the rate of O2 evolution decreased with decreasing temperature (from 25 to 4 °C) at a photon flux density of 125 μmol m?2 s?1. In leaves grown at 25 °C, the decrease of ψPSII correlated with a decrease of photochemical ChI fluorescence quenching (qp), whereas in leaves crown at 15 °C qp was largely insensitive to the temperature decrease. Compared with leaves grown at 25 °C, leaves grown at 15 °C were also able to maintain a higher fraction of oxidized to reduced QA (greater qp) at high photon flux densities (up to 2000 μmol m?2 s?1), particularly when the measurements were performed at high temperature (25 °C). With decreasing temperature and/or increasing light intensity, leaves grown at 15 °C exhibited a substantial quenching of the dark level of fluorescence F0 (q0) whereas this type of quenching was virtually absent in leaves grown at 25 °C. Furthermore, leaves grown at 15 °C were able to recover faster from photo inhibition of photosynthesis after a photoinhibitory treatment (1200 μmol m?2 s?1 at 25, 15 or 6 °C for 8 h) than leaves grown at 25 °C. The results suggest that, in spite of having a low photosynthetic capacity, Z. mays leaves grown at sub optimal temperature possess efficient mechanisms of energy dissipation which enable them to cope better with photoinhibition than leaves grown at near-optimal temperature. It is suggested that the resistance of Z. mays leaves grown at 15 °C to photoinhibition is related to the higher content of carotenoids of the xanthophyll cycle (violaxanthin + antheraxanthin + zeaxanthin) measured in these leaves than in leaves grown at 25 °C.  相似文献   

16.
Two pea (Pisum sativum L.) cultivars and a kidney bean (Phaseolus vulgaris L.) cultivars were grown in water cultures at different diurnal temperatures (15, 20, 24, 27, 30°C) or at 10°C night temperature combined with various day temperatures (20, 24, 27, 33 or 35°C) in the root medium. The inoculated plants were, more sensitive to the extreme temperatures than the plants supplied with combined nitrogen (KNO3). The middle-European pea cv. Violetta was adapted to somewhat higher root temperatures than the northern one cv. Torsdag II, the latter showing better growth at lower temperatures, when the plants were inoculated with the same Finnish Rhizobinm strain (HA1). Especially at optimum day temperatures the nitrogen fixation and consequently the dry weights of the inoculated plants were greatly increased when the night temperature was lowered. The optimum temperature for the growth of free-living Rhizobium strains (HA1 and H43) for peus was found to be 25°C and that of a strain (P103) for beans somewhat higher. Effective nitrogen fixation by nodulated legumes without a supply of combined nitrogen is achieved only when the optimum temperature range for root function is very close to the optimum for the rhizobia.  相似文献   

17.
Cucumber mosaic (CMV) and alfalfa mosaic (AlfMV) viruses could not be detected in Nicotiana rustica tissues cultured at 32 °C for 16–18 days or at 40 °C for 5 days, but infectivity remained high in comparable tissue cultured at 22 °C. Incubation of infected cultures at 28–30 °C resulted in an initial reduction followed by a partial recovery in the infectivity of both viruses. The infectivity of CMV in tissues grown between 12 and 32 °C was highest in cultures grown at 12 °C. Although CMV infectivity was not detected in cultures after 16–18 days at 32 °C, virus was eliminated only after a further 30 days at 32 °C. When cultures were transferred from 32 to 22 °C after shorter treatment periods, infectivity rapidly increased to levels higher than those of infected tissues grown continuously at 22 °C. At 40 °C, CMV was eliminated from infected tissues after 9 days and AlfMV after 7 days. Cultures grown continuously at 40 °C deteriorated rapidly but, when grown under diurnal alternating periods of 8 h at 40 °C and 16 h at 22 °C, they remained viable and CMV was also inactivated.  相似文献   

18.
In the present study the haemolytic and proteolytic activity of extracellular products (ECP) secreted from Aeromonas hydrophila (CAHH14 strain) were studied with respect to temperature and different time of incubation as well as its lethal toxicity on rohu, Labeo rohita. The strain was isolated from Catla catla (showing abdominal dropsy symptom) collected from the pond of Central Institute of Freshwater Aquaculture (CIFA), Bhubaneswar, India and was characterized on the basis of biochemical tests. The highest production of haemolysin was achieved when the bacteria was grown at 35°C for 30 h. The proteolytic activity was found to be highest when the bacterium was grown at 30°C for 36 h. The haemolytic and proteolytic toxin produced by Aeromonas hydrophila was found to be lethal to rohu (LD50 1.7 × 104 cfu/ml). The lethality of ECP was decreased by heating and completely inactivated by boiling at 100°C for 10 min. This indicates that protease activity and haemolytic activity of A. hydrophila ECP was temperature dependant.  相似文献   

19.
Low temperatures are known to restrict chloroplast development and prevent the attainment of photosynthetic competence in maize leaves. The responses of the photosynthetic apparatus of mature maize leaves grown at 14°C on transfer of the plants to 25°C are examined. The synthesis of thylakoid proteins increased immediately on transfer of leaves from 14 to 25°C, with a dramatic accumulation of thylakoid proteins and chlorophylls occurring after 3 d at 25°C. Thylakoid structure and organization also became similar to those observed in leaves grown at 25°C over this period. However, no comparable development of photosynthetic competence in photosystems I and II or in the rate of CO2 assimilation was observed on transfer of leaves from 14 to 25°C. Immunocytological analyses demonstrated heterogeneity in the distribution of a range of thylakoid proteins (cy tochrome f, the α and β subunits of the coupling factor, Dl of the photosytem II reaction centre, the 33kDa protein of the extrinsic oxygen-evolving complex of photosystem II, and subunit II of photosystem I between mesophyll cells in leaves grown at 14°C, and in the responses of individual proteins to transfer of the leaves to 25°C. Such heterogeneity between mcsophyll cells would account for the inability of the leaves to develop the expected degree of photosynthetic competence on transfer to 25°C. The effects of low growth temperatures on chloroplast biogenesis are complex, as are the changes induced by the transfer ofleaves grown at low temperatures to optimal growth temperature, and both these factors may limit the canopy development and photosynthetic productivity of crops in temperate regions.  相似文献   

20.
We analysed the relative effects of food availability and temperature on rates of growth and development of a predatory planktonic water mite, Piona exigua. Growth in length of mites fed Daphnia, Ceriodaphnia and Chydorus was analysed by Gompertz or von Bertalanffy curves; these curves were compared by parallel curve analysis. Growth rates of nymphs and adult female mites increased with temperature; the duration of the imagochrysalis stage decreased. Females grown at 10 °C were smaller at final size than females grown at 15 °C, 18 °C or 22 °C. Females reared at food levels of 15 or 30 prey l−1 grew more slowly and were smaller than those provided with 60 or 120 prey l−1. Nymphs grew more slowly when Daphnia were the only prey, than when smaller prey were available. Food level did not affect nymph growth at 10 °C or 15 °C, but growth at 18 °C or 22 °C may have been slowed at the lowest food levels. Synergistic effects of temperature and food level on nymph growth were apparent only from analysis of growth curves and not from stage duration data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号