首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

2.
3'-O-[5-azidonaphthoyl]-ADP has been synthesized as a photoreactive analog to 3'-O-naphthoyl(1)-ADP which is known to bind to the high-affinity nucleotide sites of mitochondrial F1-ATPase, considered to be the catalytic sites. The photolabel in the dark acts as a ligand to F1-ATPase and as a competitive inhibitor with Ki = 11 microM. Binding to the enzyme is accompanied by a quench of endogenous protein fluorescence leveling off at an occupancy of 1 mol/mol F1, whereas the total number of reversible sites accessible to the analog is 3 mol/mol F1 as measured by isotope studies. Covalent insertion by near ultraviolet activation of the probe yields labeling of both alpha and beta polypeptides of F1; it is accompanied by corresponding removal of reversible high-affinity sites for ADP or naphthoyl-ADP and by an inhibition of the enzyme; total inactivation occurs at a covalent occupancy of 2 mol/mol F1. This is the maximum number of sites accessible to covalent modification by the label; one reversible site is still available in the totally inactivated enzyme. This observation is discussed in terms of a stochastic model requiring a minimum of two interacting catalytic domains out of three in order to commence catalysis.  相似文献   

3.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

4.
A spin-labeled photoaffinity ATP analog, 2-N3-2',3'-SL-ATP (2-N3-SL-ATP) was specifically loaded at catalytic (exchangeable) or noncatalytic (nonexchangeable) nucleotide-binding sites on nucleotide-depleted mitochondrial F1-ATPase. Photolysis of the enzyme complexes resulted in the specific modification of beta-Tyr-345 when the catalytic sites were occupied and beta-Tyr-368 when noncatalytic sites were filled. These are the same amino acid assignments that were made previously using 2-N3ATP. The results demonstrate that the attachment of a spin label moiety to the ribose ring does not prevent proper binding of the analog at both types of nucleotide sites on F1-ATPase and suggest that the probe can be used for investigations of the nucleotide-binding sites using ESR spectroscopy. Enzyme that is in complex with the 2-N3-SL-ATP exhibits an ESR spectrum that is typical for highly immobilized nitroxyl radicals both in the dark or after photolysis. Additional peaks in the high- and low-field regions arise due to dipolar spin interactions most likely involving a pair of catalytic and noncatalytic sites. The two sites are calculated to be approximately 15 A apart. This distance, obtained through ESR spectroscopy, combined with the finding that the 2 labeled amino acids are only 23 residues apart from each other, further supports an adenylate kinase-like arrangement of nucleotide binding sites on F1-ATPase where catalytic and noncatalytic sites are in close proximity (Vogel, P. D., and Cross, R. L. (1991) J. Biol. Chem. 266, 6101-6105).  相似文献   

5.
1. 8-Azido-adenosine 5'-triphosphate (n83ATP) is a suitable photoaffinity label for F1 ATPase from Micrococcus luteus. The nucleotide is a substrate in the presence of bivalent cations and inhibits the enzyme irreversibly upon irradiation with ultraviolet light above 300 nm. 2. More than 80% of the label is covalently bound to the beta subunits in the presence of bivalent cations. Labeling and inactivation is decreased by protection with ADP, ATP or adenyl-5'-yl imidodiphosphate. To a much smaller degree the alpha subunits also become labeled. 3. n83AMP does not specifically bind to the beta subunits upon irradiation. Like n83ATP and n83ADP, it also labels the alpha subunits to a small extent. 4. The F1 ATPase is inactivated after a single beta subunit per F1 complex has become labeled. A cooperativity of the beta subunits carrying nucleotide binding sites is suggested.  相似文献   

6.
J C Wu  J Lin  H Chuan  J H Wang 《Biochemistry》1989,28(22):8905-8911
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].  相似文献   

7.
Chloroplast thylakoid membranes contain tightly bound ADP which is intimately involved in the mechanism of photophosphorylation. The photoaffinity analog 2-azido-ADP binds tightly to spinach thylakoid membrane-bound coupling factor one (CF1) and, in a manner similar to ADP, inhibits the light-triggered ATPase activity (Czarnecki, J.J., Abbott, M.S. and Selman, B.R. (1983) Eur. J. Biochem. 136, 19-24). Ultraviolet irradiation of thylakoid membranes containing noncovalently, tightly bound 2-azido[beta-32P]ADP results in the inactivation of both the methanol-stimulated MgATPase activity of the membrane-bound CF1 and the octylglucoside-dependent MgATPase activity of the solubilized enzyme. There is a linear correlation between the loss of enzyme activity and the covalent incorporation of the photoaffinity analog. Full inactivation of catalytic activity is estimated to occur upon incorporation of 1.07 mol analog and 0.65 mol analog per mol enzyme for the methanol- and octylglucoside-stimulated activities, respectively. Since 2-azido-ADP modifies only the beta subunit of the CF1 and since there are probably three beta subunits per CF1, these results indicate strong cooperativity among beta subunits and between the site of tightly bound nucleotides and the catalytic sites.  相似文献   

8.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

9.
Isolated, nucleotide-depleted bovine-heart F1-ATPase exhibits a break in Arrhenius plot with a 2.7-fold increase in activation energy of ATP hydrolysis below 18-19 degrees C. Analysis of intrinsic tyrosine fluorescence and of the circular dichroism of F1-ATPase showed an abrupt and reversible conformational change occurring at the break temperature, characteristic of a structural tightening at low temperature. Analysis of catalytic nucleotide binding sites using fluorescent ADP analog, 3'-O-(1-naphthoyl)adenosine diphosphate did not show any significant change in affinity of nucleotide binding around the transition temperature but the bound fluorophore exerted a more restricted motion and slower rotation at temperature below the break, indicating a change in the mobility of groups in the close neighbourhood. It is concluded that, as a result of temperature, two kinetically distinct states of F1-ATPase are induced, due to a change in enzyme conformation, which influences directly the properties of catalytic nucleotide binding sites.  相似文献   

10.
The kinetic parameters for the hydrolysis by F1 of the photoreactive nucleotide analogue 2-azido-ATP were determined (Vmax, 105 U/mg F1; Km, 250 microM, in the presence of 1.0 mM SO2-3). In the absence of an activating anion, a non-linear relationship in a Lineweaver-Burk plot was found for the hydrolysis of 2-azido-ATP. The 2-azido-analogues of ATP and ADP proved to be good photoaffinity labels causing notable inactivation of the F1-ATPase activity upon irradiation at 360 nm. This inhibition was also used to demonstrate high-affinity binding of these analogues to a catalytic binding site on the F1. High-affinity binding proved to be an Mg2+-requiring process, occurring with both 2-azido-ATP and 2-azido-ADP but hardly or not occurring with 8-azido-AT(D)P. Covalent binding of 2-nitreno-ATP upon irradiation of F1 containing tightly bound [beta-32P]2-azido-ATP results in a proportional inhibition of ATPase activity, extrapolating to 0.92 mol of covalently bound label per mol of F1 needed for the complete inactivation of the enzyme. When the F1 was irradiated in the presence of excess [beta-32P]2-azido-AT(D)P, 3-4 mol of label were bound when the enzyme was fully inactivated. In all cases, all or most of the radioactivity was found on the beta subunits.  相似文献   

11.
The photoaffinity analog of ATP, 3'-O-(4-benzoyl) benzoyl ATP (BzATP), was used to covalently modify the catalytic sites on the beef heart mitochondrial F1-ATPase. In the absence of actinic illumination, BzATP was a slow substrate for the enzyme (Vmax = 0.19 mumol min-1 mg-1; kcat/Km = 2.2 X 10(6) M-1s-1) and behaved as a classical competitive inhibitor versus ATP (Ki = 0.85 microM). Under photolytic conditions, BzATP inactivated F1 with pseudo first-order kinetics, and the photoinactivation reaction showed rate saturation suggesting specific, reversible binding of BzATP to F1 prior to covalent bond formation. ATP protected against F1 photoinactivation (Kprotect = 0.3 microM) and partially covalently modified F1 yielded the same Km for ATP as unmodified enzyme. These results strongly suggested that BzATP was bound to catalytic sites on the enzyme. In the absence of photolysis, BzATP saturated two binding sites on the F1 (KD = 1.6 microM), and under photolytic conditions, 1 mol of BzATP was shown to be covalently liganded to the beta subunit of the enzyme coincident with 100% loss in ATPase activity. Previous studies with the mitochondrial F1-ATPase have suggested a mechanism involving catalytic cooperativity during ATP hydrolysis. Our demonstration of a molar stoichiometry of 1 for photoinactivation is in accord with this mechanism. It is suggested that either F1 is unable to hydrolyze covalently bound BzATP, or that subsequent to hydrolysis, the BzADP product can not be released from the catalytic site. It is therefore inferred that F1 hydrolytic activity requires cooperativity between multiple, viable catalytic sites and that covalent modification of a single catalytic site is sufficient for complete enzyme inactivation.  相似文献   

12.
P S Deng  Y Hatefi  S Chen 《Biochemistry》1990,29(4):1094-1098
N-Arylazido-beta-alanyl-NAD+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] has been prepared by alkaline phosphatase treatment of arylazido-beta-alanyl-NADP+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NADP+]. This NAD+ analogue was found to be a potent competitive inhibitor (Ki = 1.45 microM) with respect to NADH for the purified bovine heart mitochondrial NADH dehydrogenase (EC 1.6.99.3). The enzyme was irreversibly inhibited as well as covalently labeled by this analogue upon photoirradiation. A stoichiometry of 1.15 mol of N-arylazido-beta-alanyl-NAD+ bound/mol of enzyme, at 100% inactivation, was determined from incorporation studies using tritium-labeled analogue. Among the three subunits, 0.85 mol of the analogue was bound to the Mr = 51,000 subunit, and each of the two smaller subunits contained 0.15 mol of the analogue when the dehydrogenase was completely inhibited upon photolysis. Both the irreversible inactivation and the covalent incorporation could be prevented by the presence of NADH during photolysis. These results indicate that N-arylazido-beta-alanyl-NAD+ is an active-site-directed photoaffinity label for the mitochondrial NADH dehydrogenase, and are further evidence that the Mr = 51,000 subunit contains the NADH binding site. Previous studies using A-arylazido-beta-alanyl-NAD+ [A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] demonstrated that the NADH binding site is on the Mr = 51,000 subunit [Chen, S., & Guillory, R. J. (1981) J. Biol. Chem. 256, 8318-8323]. Results are also presented to show that N-arylazido-beta-alanyl-NAD+ binds the dehydrogenase in a more effective manner than A-arylazido-beta-alanyl-NAD+.  相似文献   

13.
Interactions between the high affinity binding sites on mitochondrial F1 were analysed by combined use of the nucleotide analogues 3'-O-(1-naphthoyl)-ADP (N-ADP) and 2'-3'-O-(2,4,6-trinitrophenyl)-ADP (TNP-ADP). The binding behaviour of F1 with respect to these ligands was studied by measuring the fluorescence of F1 and of TNP-ADP and the fluorescence anisotropy of N-ADP. A total of 3 high affinity binding sites can be occupied by TNP-ADP. By exchange experiments, it could be shown that binding of TNP-ADP to such a site considerably accelerates the dissociation of a ligand bound to a neighbouring site. These results support the notion that the functional behaviour of F1 is symmetric: during the catalytic cycle any individual site can successively assume different affinity states as has been predicted by hypotheses such as the binding change model.  相似文献   

14.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have covalently modified the recA protein from Escherichia coli with the adenine nucleotide analog 5'-p-fluorosulfonylbenzoyladenosine (5'-FSBA). The rate at which the protein is modified shows a sigmoidal dependence on the concentration of 5'-FSBA suggesting that binding of the analog is characterized by positive cooperativity. Covalent modification of the protein results in irreversible inactivation of its single-stranded DNA-dependent ATPase activity such that 100% inactivation is achieved when 25% of the enzyme monomers have been modified. Attachment of 5'-FSBA is specific for the ATP-binding site of recA protein as judged by the following criteria: (i) attachment of the affinity label to the protein appears to saturate at 1 mol of 5'-FSBA/mol of protein; (ii) binding of 5'-FSBA to recA protein is inhibited by ATP and competitive inhibitors of its ATP hydrolytic activity, e.g. adenosine-5'-O-(thiotriphosphate), ADP, UTP, and GTP, but not by adenosine; (iii) attachment of 5'-FSBA to the protein occurs at a single site as determined by high pressure liquid chromatography peptide separation. Following trypsin digestion of recA protein that had been covalently modified with [3H]5'-FSBA we isolated a single labeled peptide (T31) containing the exclusive site of 5'-FSBA attachment. A secondary proteolytic digestion was performed on both 5'-FSBA modified T31 and unmodified T31 using Staphylococcus aureus V8 protease, and by comparison of the amino acid compositions of the resulting peptides we identified Tyr-264 as the exclusive site of 5'-FSBA attachment in recA protein.  相似文献   

16.
Recent crystallographic studies have shown that smooth muscle myosin has three highly conserved unique loops, loop B (320-327), loop M (687-699), and loop N (125-134), similar to other myosins, skeletal muscle and dictyostelium myosins. We previously demonstrated that the effect of actin is mediated by a conformational change in one of the loops, loop M comprising amino acids 677 to 689 of skeletal muscle myosin [Maruta and Homma (1998) J. Biochem. 124, 528-533]. In the present study, in order to clarify the role of these smooth muscle myosin loops in energy transduction, we specifically labeled the loops with a fluorescent photoreactive ADP analogue, 3'-O-(N-methylanthraniloyl)-8-azido-ADP (Mant-8-N(3)-ADP), and then measured the fluorescent polarization. When Mant-8-N(3)-ADP was trapped by aluminium fluoride or vanadate into the ATPase site, Mant-8-N(3)-ADP was covalently incorporated into loop N (125-134). In contrast, Mant-8-N(3)-ADP trapped by beryllium fluoride was covalently incorporated into both loop M (687-699) and loop N (125-134) at an almost equimolar ratio. Actin binding to smooth muscle myosin S1 (SMO-S1) labeled at only loop N (125-134) increased the polarization due to the viscosity of actin. In contrast, S1 labeled at both loops N and M showed a much smaller increase in polarization. Our results indicate that the probe at loop M (687-699) of smooth muscle myosin moved to a less hindered region, suggesting that actin binding induces conformational changes at loop M (687-699) similar to those of the corresponding loop (677-689) in skeletal muscle myosin, as previously demonstrated in our laboratory.  相似文献   

17.
M A Jacobson  R F Colman 《Biochemistry》1984,23(17):3789-3799
The distance between the catalytic site on bovine liver glutamate dehydrogenase labeled with 4-(iodoacetamido)salicylic acid (ISA) and the adenosine 5'-diphosphate (ADP) activatory site occupied by the analogue 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)adenosine 5'-diphosphate (TNP-ADP) was evaluated by energy transfer. Native enzyme and enzyme containing about 1 mol of acetamidosalicylate/mol of subunit bind about 0.5 mol of TNP-ADP/mol of subunit, and TNP-ADP competes for binding with ADP to native and modified enzyme, indicating that the analogue is a satisfactory probe of the ADP site. From the quenching of acetamidosalicylate donor fluorescence upon addition of TNP-ADP, an average distance of 33 A was determined between the catalytic and ADP sites. The fluorescent nucleotide analogue 5'-[p-(fluorosulfonyl)benzoyl]-2-aza-1,N6-ethenoadenosine (5'-FSBa epsilon A) reacts covalently with glutamate dehydrogenase to about 1 mol/peptide chain. As compared to native enzyme, the SBa epsilon A-enzyme exhibits decreased sensitivity to GTP inhibition but retains its catalytic activity as well as its ability to be activated by ADP and inhibited by high concentrations of NADH. Complete protection against decreased sensitivity to GTP inhibition is provided by GTP in the presence of NADH. It is concluded that 5'-FSBa epsilon A modifies a GTP site on glutamate dehydrogenase. The distance of 23 A between the catalytic site labeled with ISA and a GTP site labeled with 5'-FSBa epsilon A was measured from the quenching of salicylate donor fluorescence in the presence of the SBa epsilon A acceptor on a doubly labeled enzyme. The average distance between the ADP and GTP sites was previously measured as 18 A [Jacobson, M. A., & Colman, R. F. (1983) Biochemistry 22, 4247-4257], indicating that the regulatory sites of glutamate dehydrogenase are closer to each other than to the catalytic site.  相似文献   

18.
Ward DG  Taylor M  Lilley KS  Cavieres JD 《Biochemistry》2006,45(10):3460-3471
ATP has high- and low-affinity effects on the sodium pump and other P-type ATPases. We have approached this question by using 2',3'-O-(trinitrophenyl)-8-azidoadenosine 5'-diphosphate (TNP-8N(3)-ADP) to photoinactivate and label Na,K-ATPase, both in its native state and after covalent FITC block of its high-affinity ATP site. With the native enzyme, the photoinactivation rate constant increases hyperbolically with a K(D(TNP-8N)3(-)(ADP)) of 0.11 microM; TNP-ATP and ATP protect the site with high affinities. The inactivation does not require Na(+), but K(+) inhibits with a K(K)' of 12 microM; Na(+) reverses this effect, with a K(Na) of 0.17 mM. This pattern suggests that Na(+) and K(+) are binding at sites in their "intracellular" conformation. It was known that FITC did not abolish the reverse phosphorylation by P(i), or the K(+)-phosphatase activity, and that TNP-8N(3)-ADP could subsequently photoinactivate the latter with >100-fold lower affinity; in that case, the cation sites acted as if facing outward [Ward, D. G., and Cavieres, J. D. (1998) J. Biol. Chem. 273, 14277-14284, 33759-33765]. Native and FITC-modified enzymes have now been photolabeled with TNP-8N(3)-[alpha-(32)P]ADP and alpha-chain soluble tryptic peptides separated by reverse-phase HPLC. With native Na,K-ATPase, three labeled peaks lead to the unique sequence alpha-(470)Ile-Val-Glu-Ile-Pro-Phe-Asn-Ser-Thr-Asn-X-Tyr-Gln-Leu-Ser-Ile-His-Lys(487), the dropped residue being alphaLys480. With the FITC enzyme, instead, two independent labeling and purification cycles return the sequence alpha-(721)Ala-Asp-Ile-Gly-Val-Ala-Met-Gly-Ile-Ala-Gly-Ser-Asp-Val-Ser-Lys(736). These results suggest that Na,K-ATPase also has a low-affinity nucleotide binding region, one that is under distinctive allosteric control by Na(+) and K(+). Moreover, the cation effects seem compatible with a slow, passive Na(+)/K(+) carrier behavior of the FITC-modified sodium pump.  相似文献   

19.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

20.
L Michel  J Garin  J P Issartel  P V Vignais 《Biochemistry》1989,28(26):10022-10028
4-Azido-2-nitrophenyl pyrophosphate (azido-PPi) labeled with 32P in the alpha position was prepared and used to photolabel beef heart mitochondrial F1. Azido-PPi was hydrolyzed by yeast inorganic pyrophosphatase, but not by mitochondrial F1-ATPase. Incubation of F1 with [alpha-32P]azido-PPi in the dark under conditions of saturation resulted in the binding of the photoprobe to three sites, two of which exhibited a high affinity (Kd = 2 microM), the third one having a lower affinity (Kd = 300 microM). Mg2+ was required for binding. As with PPi [Issartel et al. (1987) J. Biol. Chem. 262, 13538-13544], the binding of 3 mol of azido-PPi/mol of F1 resulted in the release of one tightly bound nucleotide. ADP, AMP-PNP, and PPi competed with azido-PPi for binding to F1, but Pi and the phosphate analogue azidonitrophenyl phosphate did not. The binding of [32P]Pi to F1 was enhanced at low concentrations of azido-PPi, as it was in the presence of low concentrations of PPi. Sulfite, which is thought to bind to an anion-binding site on F1, inhibited competitively the binding of both ADP and azido-PPi, suggesting that the postulated anion-binding site of F1 is related to the exchangeable nucleotide-binding sites. Upon photoirradiation of F1 in the presence of [alpha-32P]azido-PPi, the photoprobe became covalently bound with concomitant inactivation of F1. The plots relating the inactivation of F1 to the covalent binding of the probe were rectilinear up to 50% inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号