首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) resulting in the accumulation of Ac(1)PIM(1) and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed 'Cg-LM-A') and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed 'Cg-LM-B'. Further chemical analyses established the lipoglycan possessed an alpha-D: -glucopyranosyluronic acid-(1 --> 3)-glycerol (GlcAGroAc(2)) based anchor which was then further glycosylated by 8-22 mannose residues, with Man(12-20)GlcAGroAC(2) molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-alpha by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity.  相似文献   

2.
Mycobacterium tuberculosis and Corynebacterium glutamicum share a similar cell wall structure and orthologous enzymes involved in cell wall assembly. Herein, we have studied C. glutamicum NCgl1505, the orthologue of putative glycosyltransferases Rv1459c from M. tuberculosis and MSMEG3120 from Mycobacterium smegmatis. Deletion of NCgl1505 resulted in the absence of lipomannan (Cg-LM-A), lipoarabinomannan (Cg-LAM) and a multi-mannosylated polymer (Cg-LM-B) based on a 1,2-di-O-C(16)/C(18:1)-(alpha-D-glucopyranosyluronic acid)-(1-->3)-glycerol (GlcAGroAc(2)) anchor, while syntheses of triacylated-phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) and Man(1)GlcAGroAc(2) were still abundant in whole cells. Cell-free incubation of C. glutamicum membranes with GDP-[(14)C]Man established that C. glutamicum synthesized a novel alpha(1-->6)-linked linear form of Cg-LM-A and Cg-LM-B from Ac(1)PIM(2) and Man(1)GlcAGroAc(2) respectively. Furthermore, deletion of NCgl1505 also led to the absence of in vitro synthesized linear Cg-LM-A and Cg-LM-B, demonstrating that NCgl1505 was involved in core alpha(1-->6) mannan biosynthesis of Cg-LM-A and Cg-LM-B, extending Ac(1)PI[(14)C]M(2) and [(14)C]Man(1)GlcAGroAc(2) primers respectively. Use of the acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C(8) in an in vitro cell-free assay confirmed NCgl1505 as an alpha(1-->6) mannopyranosyltransferase, now termed MptB. While Rv1459c and MSMEG3120 demonstrated similar in vitroalpha(1-->6) mannopyranosyltransferase activity, deletion of the Rv1459c homologue in M. smegmatis did not result in loss of mycobacterial LM/LAM, indicating a functional redundancy for this enzyme in mycobacteria.  相似文献   

3.
Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the lipoprotein, LpqW, regulates PIM and LM/LAM biosynthesis in mycobacteria. Here, we provide direct evidence that LpqW regulates the activity of key mannosyltransferases in the periplasmic leaflet of the cell membrane. Inactivation of the Corynebacterium glutamicum lpqW ortholog, NCgl1054, resulted in a slow growth phenotype and a global defect in lipoglycan biosynthesis. The NCgl1054 mutant lacked LAMs and was defective in the elongation of the major PIM species, AcPIM2, as well as a second glycolipid, termed Gl-X (mannose-α1–4-glucuronic acid-α1-diacylglycerol), which function as membrane anchors for LM-A and LM-B, respectively. Elongation of AcPIM2 and Gl-X was found to be dependent on expression of polyprenol phosphomannose (ppMan) synthase. However, the ΔNCgl1054 mutant synthesized normal levels of ppMan, indicating that LpqW is not required for synthesis of this donor. A spontaneous suppressor strain was isolated in which lipoglycan synthesis in the ΔNCgl1054 mutant was partially restored. Genome-wide sequencing indicated that a single amino acid substitution within the ppMan-dependent mannosyltransferase MptB could bypass the need for LpqW. Further evidence of an interaction is provided by the observation that MptB activity in cell-free extracts was significantly reduced in the absence of LpqW. Collectively, our results suggest that LpqW may directly activate MptB, highlighting the role of lipoproteins in regulating key cell wall biosynthetic pathways in these bacteria.  相似文献   

4.
The cell walls of the Corynebacterineae, which includes the important human pathogen Mycobacterium tuberculosis, contain two major lipopolysaccharides, lipoarabinomannan (LAM) and lipomannan (LM). LAM is assembled on a subpool of phosphatidylinositol mannosides (PIMs), whereas the identity of the LM lipid anchor is less well characterized. In this study we have identified a new gene (Rv2188c in M. tuberculosis and NCgl2106 in Corynebacterium glutamicum) that encodes a mannosyltransferase involved in the synthesis of the early dimannosylated PIM species, acyl-PIM2, and LAM. Disruption of the C. glutamicum NCgl2106 gene resulted in loss of synthesis of AcPIM2 and accumulation of the monomannosylated precursor, AcPIM1. The synthesis of a structurally unrelated mannolipid, Gl-X, was unaffected. The synthesis of AcPIM2 in C. glutamicum DeltaNCgl2106 was restored by complementation with M. tuberculosis Rv2188c. In vivo labeling of the mutant with [3H]Man and in vitro labeling of membranes with GDP-[3H]Man confirmed that NCgl2106/Rv2188c catalyzed the second mannose addition in PIM biosynthesis, a function previously ascribed to PimB/Rv0557. The C. glutamicum Delta NCgl2106 mutant lacked mature LAM but unexpectedly still synthesized the major pool of LM. Biochemical analyses of the LM core indicated that this lipopolysaccharide was assembled on Gl-X. These data suggest that NCgl2106/Rv2188c and the previously studied PimB/Rv0557 transfer mannose residues to distinct mannoglycolipids that act as precursors for LAM and LM, respectively.  相似文献   

5.
All species of Mycobacteria synthesize distinctive cell walls that are rich in phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). PIM glycolipids, having 2-4 mannose residues, can either be channeled into polar PIM species (with 6 Man residues) or hypermannosylated to form LM and LAM. In this study, we have identified a Mycobacterium smegmatis gene, termed lpqW, that is required for the conversion of PIMs to LAM and is highly conserved in all mycobacteria. A transposon mutant, Myco481, containing an insertion near the 3' end of lpqW exhibited altered colony morphology on complex agar medium. This mutant was unstable and was consistently overgrown by a second mutant, represented by Myco481.1, that had normal growth and colony characteristics. Biochemical analysis and metabolic labeling studies showed that Myco481 synthesized the complete spectrum of apolar and polar PIMs but was unable to make LAM. LAM biosynthesis was restored to near wild type levels in Myco481.1. However, this mutant was unable to synthesize the major polar PIM (AcPIM6) and accumulated a smaller intermediate, AcPIM4. Targeted disruption of the lpqW gene and complementation of the initial Myco481 mutant with the wild type gene confirmed that the phenotype of this mutant was due to loss of LpqW. These studies suggest that LpqW has a role in regulating the flux of early PIM intermediates into polar PIM or LAM biosynthesis. They also suggest that AcPIM4 is the likely branch point intermediate in polar PIM and LAM biosynthesis.  相似文献   

6.
Lipomannan (LM) and lipoarabinomannan (LAM) are key Corynebacterineae glycoconjugates that are integral components of the mycobacterial cell wall, and are potent immunomodulators during infection. LAM is a complex heteropolysaccharide synthesized by an array of essential glycosyltransferase family C (GT-C) members, which represent potential drug targets. Herein, we have identified and characterized two open reading frames from Corynebacterium glutamicum that encode for putative GT-Cs. Deletion of NCgl2100 and NCgl2097 in C. glutamicum demonstrated their role in the biosynthesis of the branching α(1→2)-Manp residues found in LM and LAM. In addition, utilizing a chemically defined nonasaccharide acceptor, azidoethyl 6-O-benzyl-α-D-mannopyranosyl-(1→6)-[α-D-mannopyranosyl-(1→6)](7) -D-mannopyranoside, and the glycosyl donor C(50) -polyprenol-phosphate-[(14) C]-mannose with membranes prepared from different C. glutamicum mutant strains, we have shown that both NCgl2100 and NCgl2097 encode for novel α(1→2)-mannopyranosyltransferases, which we have termed MptC and MptD respectively. Complementation studies and in vitro assays also identified Rv2181 as a homologue of Cg-MptC in Mycobacterium tuberculosis. Finally, we investigated the ability of LM and LAM from C. glutamicum, and C. glutamicumΔmptC and C. glutamicumΔmptD mutants, to activate Toll-like receptor 2. Overall, our study enhances our understanding of complex lipoglycan biosynthesis in Corynebacterineae and sheds further light on the structural and functional relationship of these classes of polysaccharides.  相似文献   

7.
Phosphatidylinositol mannosides (PIMs) and their related molecules lipomannan (LM) and lipoarabinomannan (LAM) are important components of the mycobacterial cell wall. These molecules mediate host-pathogen interactions and exhibit immunomodulatory activities. The biosynthesis of these lipoglycans is not fully understood. In this study, we have identified a mycobacterial gene (Rv1500) that is involved in the synthesis of PIMs. We have named this gene pimF. Transposon mutagenesis of pimF of Mycobacterium marinum resulted in multiple phenotypes, including altered colony morphology, disappearance of tetracyl-PIM(7), and accumulation of tetraacyl-PIM(5). The syntheses of LAM and LM were also affected. In addition, the pimF mutant exhibited a defect during infection of cultured macrophage cells. Although the mutant was able to replicate and persist within macrophages, the initial cell entry step was inefficient. Transformation of the M. marinum mutant with the pimF homolog of Mycobacterium tuberculosis complemented all of the above mentioned phenotypes. These results provide evidence that PimF is a mannosyltransferase. However, sequence analysis indicates that PimF is distinct from mannosyltransferases involved in the early steps of PIM synthesis. PimF catalyzes the formation of high molecular weight PIMs, which are precursors for the synthesis of LAM and LM. As such, this work marks the first analysis of a mannosyltransferase involved in the later stages of PIM synthesis.  相似文献   

8.
The biosynthesis of lipoarabinomannan (LAM), a key mycobacterial lipoglycan that has been implicated in numerous immunoregulatory functions, was examined utilizing D-mannosamine (ManN) as a tool to identify mannosyltransferase genes involved in LAM synthesis. Cell-free reactions utilizing cellular membranes of mycobacteria as the enzyme source indicated that ManN inhibited the synthesis of phosphatidylinositol mannosides, early precursors to LAM. A selection strategy was devised to screen a Mycobacterium tuberculosis genomic library in Mycobacterium smegmatis for clones conferring conditional resistance to ManN, with the rationale that overexpression of the gene(s) encoding a target of ManN would impart a ManN-resistant phenotype under these conditions. This strategy led to the identification of pimB, whose deduced amino acid sequence shows similarity to mannosyltransferases and other glycosyltransferases. Partially purified recombinant PimB protein from Escherichia coli or membranes from M. smegmatis overexpressing the pimB gene were used in cell-free assays to show that PimB catalyzes the formation of triacylphosphatidylinositol dimannoside from GDP-mannose and triacylphosphatidylinositol monomannoside.  相似文献   

9.
ABSTRACT: BACKGROUND: Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. RESULTS: Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. CONCLUSION: C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.  相似文献   

10.
The glycosyl donor, polyprenyl monophosphomannose (PPM), has been shown to be involved in the biosynthesis of the mycobacterial lipoglycans: lipomannan and lipoarabinomannan. The mycobacterial PPM synthase (Mt-ppm1) catalyzes the transfer of mannose from GDP-mannose to polyprenyl phosphates. Based on sequence homology to Mt-ppm1, we have identified the PPM synthase from Corynebacterium glutamicum. In the present study, we demonstrate that the corynebacterial synthase is composed of two distinct domains; a catalytic domain (Cg-ppm1) and a membrane domain (Cg-ppm2). Through the inactivation of Cg-ppm1, we observed a complex phenotype that included altered cell growth rate and inability to synthesize PPM molecules and lipoglycans. When Cg-ppm2 was deleted, no observable phenotype was noted, indicating the clear organization of the two domains. The complementation of the inactivated Cg-ppm1 strain with the corresponding mycobacterial enzyme (Mt-Ppm1/D2) led to the restoration of a wild type phenotype. The present study illustrates, for the first time, the generation of a lipoglycan-less mutant based on a molecular strategy in a member of the Corynebacterianeae family. Lipoglycans are important immunomodulatory molecules involved in determining the outcome of infection, and so the generation of defined mutants and their subsequent immunological characterization is timely.  相似文献   

11.
Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of alpha(1-->6) and alpha(1-->2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor beta-D-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an alpha(1-->6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the alpha(1-->6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae.  相似文献   

12.
13.
Toll-like receptors (TLRs) recognize pathogens by interacting with pathogen-associated molecular patterns, such as the phosphatidylinositol-based lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM). Such structures are present in several pathogens, including Mycobacterium tuberculosis, being important for the initiation of immune responses. It is well established that the interaction of LM and LAM with TLR2 is a process dependent on the structure of the ligands. However, the implications of structural variations on TLR2 ligands for the development of T helper (Th) cell responses or in the context of in vivo responses are less studied. Herein, we used Corynebacterium glutamicum as a source of lipoglycan intermediates for host interaction studies. In this study, we have deleted a putative glycosyltransferase, NCgl2096, from C. glutamicum and found that it encodes for a novel α(1→2)arabinofuranosyltransferase, AftE. Biochemical analysis of the lipoglycans obtained in the presence (wild type) or absence of NCgl2096 showed that AftE is involved in the biosynthesis of singular arabinans of LAM. In its absence, the resulting molecule is a hypermannosylated (hLM) form of LAM. Both LAM and hLM were recognized by dendritic cells, mainly via TLR2, and triggered the production of several cytokines. hLM was a stronger stimulus for in vitro cytokine production and, as a result, a more potent inducer of Th17 responses. In vivo data confirmed hLM as a stronger inducer of cytokine responses and suggested the involvement of pattern recognition receptors other than TLR2 as sensors for lipoglycans.  相似文献   

14.
Phosphatidylinositol mannosides (PIMs) are a major class of glycolipids in all mycobacteria. AcPIM2, a dimannosyl PIM, is both an end product and a precursor for polar PIMs, such as hexamannosyl PIM (AcPIM6) and the major cell wall lipoglycan, lipoarabinomannan (LAM). The mannosyltransferases that convert AcPIM2 to AcPIM6 or LAM are dependent on polyprenol-phosphate-mannose (PPM), but have not yet been characterized. Here, we identified a gene, termed pimE that is present in all mycobacteria, and is required for AcPIM6 biosynthesis. PimE was initially identified based on homology with eukaryotic PIG-M mannosyltransferases. PimE-deleted Mycobacterium smegmatis was defective in AcPIM6 synthesis, and accumulated the tetramannosyl PIM, AcPIM4. Loss of PimE had no affect on cell growth or viability, or the biosynthesis of other intracellular and cell wall glycans. However, changes in cell wall hydrophobicity and plasma membrane organization were detected, suggesting a role for AcPIM6 in the structural integrity of the cell wall and plasma membrane. These defects were corrected by ectopic expression of the pimE gene. Metabolic pulse-chase radiolabeling and cell-free PIM biosynthesis assays indicated that PimE catalyzes the alpha1,2-mannosyl transfer for the AcPIM5 synthesis. Mutation of an Asp residue in PimE that is conserved in and required for the activity of human PIG-M resulted in loss of PIM-biosynthetic activity, indicating that PimE is the catalytic component. Finally, PimE was localized to a distinct membrane fraction enriched in AcPIM4-6 biosynthesis. Taken together, PimE represents the first PPM-dependent mannosyl-transferase shown to be involved in PIM biosynthesis, where it mediates the fifth mannose transfer.  相似文献   

15.
16.
The inspection of the complete genome sequence of Corynebacterium glutamicum ATCC 13032 led to the identification of dapC and dapF, the last two unknown genes of the succinylase branch of the L-lysine biosynthesis. The deduced DapF protein of C. glutamicum is characterized by a two-domain structure and a conserved diaminopimelate (DAP) epimerase signature. Overexpression of dapF resulted in an 8-fold increase of the specific epimerase activity. A defined deletion in the dapF gene led to a reduced growth of C. glutamicum in a medium with excess carbon but limited ammonium availability. The predicted DapC protein of C. glutamicum shared 29% identical amino acids with DapC from Bordetella pertussis, the only enzymatically characterized N-succinyl-aminoketopimelate aminotransferase. Overexpression of the dapC gene in C. glutamicum resulted in a 9-fold increase of the specific aminotransferase activity. A C. glutamicum mutant with deleted dapC showed normal growth characteristics with excess carbon and limited ammonium. Even a mutation of the two genes dapC and ddh, interrupting both branches of the split pathway, could be established in C. glutamicum. Overexpression of the dapF or the dapC gene in an industrial C. glutamicum strain resulted in an increased L-lysine production, indicating that both genes might be relevant targets for the development of improved production strains.  相似文献   

17.
Fatty acyl functions of the glycosylated phosphatidylinositol (GPI) anchors of the phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) of mycobacteria play a critical role in both the physical properties and biological activities of these molecules. In a search for the acyltransferases that acylate the GPI anchors of PIM, LM, and LAM, we examined the function of the mycobacterial Rv2611c gene that encodes a putative acyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A Rv2611c mutant of Mycobacterium smegmatis was constructed which exhibited severe growth defects and contained an increased amount of phosphatidylinositol mono- and di-mannosides and a decreased amount of acylated phosphatidylinositol di-mannosides compared with the wild-type parental strain. In cell-free assays, extracts from M. smegmatis overexpressing the M. tuberculosis Rv2611c gene incorporated [14C]palmitate into acylated phosphatidylinositol mono- and di-mannosides, and transferred cold endogenous fatty acids onto 14C-labeled phosphatidylinositol mono- and di-mannosides more efficiently than extracts from the wild-type strain. Cell-free extracts from the Rv2611c mutant of M. smegmatis were greatly impaired in these respects. This work provides evidence that Rv2611c is the acyltransferase that catalyzes the acylation of the 6-position of the mannose residue linked to position 2 of myo-inositol in phosphatidylinositol mono- and di-mannosides, with the mono-mannosylated lipid acceptor being the primary substrate of the enzyme. We also provide the first evidence that two distinct pathways lead to the formation of acylated PIM2 from PIM1 in mycobacteria.  相似文献   

18.
The arabinogalactan (AG) of Corynebacterianeae is a critical macromolecule that tethers mycolic acids to peptidoglycan, thus forming a highly impermeable cell wall matrix termed the mycolyl-arabinogalactan peptidoglycan complex (mAGP). The front line anti-tuberculosis drug, ethambutol (Emb), targets the Mycobacterium tuberculosis and Corynebacterium glutamicum arabinofuranosyltransferase Mt-EmbA, Mt-EmbB and Cg-Emb enzymes, respectively, which are responsible for the biosynthesis of the arabinan domain of AG. The substrate utilized by these important glycosyltransferases, decaprenylmonophosphoryl-D-arabinose (DPA), is synthesized via a decaprenylphosphoryl-5-phosphoribose (DPPR) synthase (UbiA), which catalyzes the transfer of 5-phospho-ribofuranose-pyrophosphate (pRpp) to decaprenol phosphate to form DPPR. Glycosyl compositional analysis of cell walls extracted from a C. glutamicum::ubiA mutant revealed a galactan core consisting of alternating beta(1-->5)-Galf and beta(1-->6)-Galf residues, completely devoid of arabinan and a concomitant loss of cell-wall-bound mycolic acids. In addition, in vitro assays demonstrated a complete loss of arabinofuranosyltransferase activity and DPA biosynthesis in the C. glutamicum::ubiA mutant when supplemented with p[14C]Rpp, the precursor of DPA. Interestingly, in vitro arabinofuranosyltransferase activity was restored in the C. glutamicum::ubiA mutant when supplemented with exogenous DP[14C]A substrate, and C. glutamicum strains deficient in ubiA, emb, and aftA all exhibited different levels of DPA biosynthesis.  相似文献   

19.
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.  相似文献   

20.
The waxy cell wall is crucial to the survival of mycobacteria within the infected host. The cell wall is a complex structure rich in unusual molecules that includes two related lipoglycans, the phosphatidylinositol mannosides (PIMs) and lipoarabinomannans (LAMs). Many proteins implicated in the PIM/LAM biosynthetic pathway, while attractive therapeutic targets, are poorly defined. The 2.4A resolution crystal structure of an essential lipoprotein, LpqW, implicated in LAM biosynthesis is reported here. LpqW adopts a scaffold reminiscent of the distantly related, promiscuous substrate-binding proteins of the ATP-binding cassette import system. Nevertheless, the unique closed conformation of LpqW suggests that mycobacteria and other closely related pathogens have hijacked this scaffold for use in key processes of cell wall biosynthesis. In silico docking provided a plausible model in which the candidate PIM ligand binds within a marked electronegative region located on the surface of LpqW. We suggest that LpqW represents an archetypal lipoprotein that channels intermediates from a pathway for mature PIM production into a pathway for LAM biosynthesis, thus controlling the relative abundance of these two important components of the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号