首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mitochondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K+(ATP)-channel) opener, diazoxide (Dz). Activation of the K+(ATP)-channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.  相似文献   

2.
We describe the existence of a potassium ion transport mechanism in the mitochondrial inner membrane of a lower eukaryotic organism, Acanthamoeba castellanii. We found that substances known to modulate potassium channel activity influenced the bioenergetics of A. castellanii mitochondria. In isolated mitochondria, the rate of resting respiration is increased by about 10% in response to potassium channel openers, i.e. diazoxide and BMS-191095, during succinate-, malate-, or NADH-sustained respiration. This effect is strictly dependent on the presence of potassium ions in an incubation medium and is reversed by glibenclamide (a potassium channel blocker). Diazoxide and BMS-191095 also caused a slight but statistically significant depolarization of mitochondrial membrane potential (measured with a TPP(+)-specific electrode), regardless of the respiratory substrate used. The resulting steady state value of membrane potential was restored after treatment with glibenclamide or 1 mM ATP. Additionally, the electrophysiological properties of potassium channels present in the A. castellanii inner mitochondrial membrane are described in the reconstituted system, using black lipid membranes. Conductance from 90 +/- 7 to 166 +/- 10 picosiemens, inhibition by 1 mM ATP/Mg(2+) or glibenclamide, and activation by diazoxide were observed. These results suggest that an ATP-sensitive potassium channel similar to that of mammalian mitochondria is present in A. castellanii mitochondria.  相似文献   

3.
Single-channel currents were recorded from ATP-sensitive K+ channels in inside-out membrane patches excised from isolated rat ventricular myocytes. Perfusion of the internal surface of excised membrane patches with solutions which contained between 5 and 100 microM free calcium caused the loss of K+ATP channel activity which was not reversed when the membranes were washed with Ca-free solution. K+ATP channel activity could be recovered by bathing the patches in Mg.ATP. The loss of K+ATP channel activity provoked by internal calcium was a process which occurred over a time scale of seconds. Channel closure evoked by internal ATP was essentially instantaneous. The speed of K+ATP channel inactivation increased with the concentration of calcium. Neither a phosphatase inhibitor (fluoride ions) nor a proteinase inhibitor (leupeptin) had any effect upon the loss of K+ channel activity stimulated by internal calcium.  相似文献   

4.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

5.
A simple osmotic method has been developed to determine the internal K+ concentration of mitochondria by determining the concentration of external K+ at constant osmotic pressure at which metabolically inhibited mitochondria neither shrink nor swell. This concentration has been found to correspond to approx. 80-85 mM in freshly isolated mitochondria and considerably lower after additional centrifugation procedures. Since mitochondria are in osmotic equilibrium with the suspending medium (in this case, 0.32 osmolal), and K+ is the primary exchangeable internal ion, a significant proportion of the internal osmotic pressure must be exerted by the sucrose. Results for experiments determining internal K+ after centrifuging mitochondria at various G values confirm the reports of Sitaramam et al. (Sitaraman, V. and Sarma, M.K.J. (1981) Proc. Natl. Acad. Sci. USA 78, 3441-3445 and Sambasivarao, D. and Sitaramam, V. (1983) Biochim. Biophys. Acta 722, 256-270) that centrifugation induces the entry of sucrose in mitochondria isolated in a sucrose medium.  相似文献   

6.
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in cardioprotection, although the channel remains molecularly undefined. Several studies have demonstrated that mitochondrial complex II inhibitors activate the mK(ATP), suggesting a potential role for complex II in channel composition or regulation. However, these inhibitors activate mK(ATP) at concentrations which do not affect bulk complex II activity. Using the potent complex II inhibitor Atpenin A5, this relationship was investigated using tight-binding inhibitor theory, to demonstrate that only 0.4 % of total complex II molecules are necessary to activate the mK(ATP). These results estimate the mK(ATP) content at 15 channels per mitochondrion.  相似文献   

7.
Cuong DV  Kim N  Joo H  Youm JB  Chung JY  Lee Y  Park WS  Kim E  Park YS  Han J 《Mitochondrion》2005,5(2):121-133
Mitochondrial ATP-sensitive potassium (mitoKATP) channels play a pivotal role in early and late ischemic preconditioning, but the subunit composition of mitoKATP channels remains unclear. In this study, we investigated the subunit composition of mitoKATP channels in rat hearts using confocal microscopy, immunofluorescence, and Western blot analysis. The green fluorescent probe glibenclamide-BODIPY was colocalized with the red fluorescent mitochondrial marker MitroTracker Red in isolated ventricular myocytes and in ventricular myocyte mitochondria, indicating the presence of sulfonylurea receptors (SURs) in the mitochondria. Anti-Kir6.1, anti-Kir6.2, and anti-SUR2 immunofluorescence was colocalized with that of MitoTracker Red in isolated mitochondria, suggesting that Kir6.1, Kir6.2, and SUR2 subunits are present in the mitochondria. Similarly, Kir6.1 (approximately 46 kDa), Kir6.2 (approximately 46 and approximately 40 kDa), and SUR2 (approximately 140 kDa) proteins were found to be expressed in mitochondria using Western blot analysis. By contrast, SUR1 was not present in mitochondria. These results suggest that mitoKATP channels in rat hearts might comprise a combination of Kir6.1, Kir6.2, and SUR2 subunits.  相似文献   

8.
There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.  相似文献   

9.
ATP-sensitive K(+) (K(ATP)) channel subunits on the subcellular structures of rat cardiomyocytes were studied with antibodies against Kir6.1 and Kir6.2. According to the results of Western blot analysis, Kir6.1 was strongly expressed in mitochondrial and microsome fractions, and faintly expressed in cell membrane fraction, whereas Kir6.2 was mainly expressed in the microsome fraction and weakly in cell membrane and mitochondrial fractions. Immunohistochemistry showed that Kir6.1 and Kir6.2 were expressed in the endocardium, atrial and ventricular myocardium, and in vascular smooth muscles. Immunoelectron microscopy revealed that Kir6.1 immunoreactivity was mainly localized in the mitochondria, whereas Kir6.2 immunoreactivity was mainly localized in the endoplasmic reticulum and a few in the mitochondria. Both Kir6.1 and Kir6.2 are candidates of mitochondrial K(ATP) channel subunits. The data obtained in this study will be useful for analyzing the composition of K(ATP) channels of cardiomyocytes and help to understanding the cardioprotective role of K(ATP) channels during heart ischemia.  相似文献   

10.
11.
Potassium ion channels are generally believed to have current-voltage (IV) relations which are linearly related to driving force ( V - E(K)), where V is membrane potential and E(K) is the potassium ion equilibrium potential. Consequently, activation curves for K+ channels have often been measured by normalizing voltage-clamp families of macroscopic K+ currents with (V - E(K)), where V is the potential of each successive step in the voltage clamp sequence. However, the IV relation for many types of K+ channels actually has a non-linear dependence upon driving force which is well described by the Goldman-Hodgkin-Katz relation. When the GHK dependence on (V - E(K)) is used in the normalization procedure, a very different voltage dependence of the activation curve is obtained which may more accurately reflect this feature of channel gating. Novel insights into the voltage dependence of the rapidly inactivating I(A) channels Kv1.4 and Kv4.2 have been obtained when this procedure was applied to recently published results.  相似文献   

12.
The effect of hypoxenum on bioenergetic processes in heart and liver mitochondria of rats, connected with respiration, the generation of hydrogen peroxide, and the activity of ATP-sensitive K-channel ((mitoK)ATP) has been studied. It was shown that hypoxenum in the concentration range of 0.05-10 microg/ml stimulates respiration, increases the coupling in the respiratory chain, and enhances the formation of H2O2 and energy-dependent swelling associated with potassium transport in mitochondria. Hypoxenum removes the inhibitory effect of ATP on the energy-dependent swelling of mitochondria and partially reduces the accumulation of H2O2 in the presence of ATP. The role of antihypoxic and antioxidant action of hypoxenum associated with the activation of (mitoK)ATP is discussed.  相似文献   

13.
The effect of Hypoxen (HX) on bioenergetic processes in the mitochondria of heart and liver of rats connected with respiration, generation of hydrogen peroxide and activity of ATP-sensitive K-channel (mitoKATP) has been studied. It is shown that HX in the range of 0.05–10 μg/mL stimulates respiration, increases the coupling in the respiratory chain, and increases the formation of H2O2 and energy-dependent swelling associated with potassium transport in mitochondria. HX removes the inhibitory effect of ATP on the energy-dependent swelling of mitochondria and partially reduces the accumulation of H2O2 in the presence of ATP. The role of antihypoxic and antioxidant action of HX associated with the activation of mitoKATP is discussed.  相似文献   

14.
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane.  相似文献   

15.
16.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes.  相似文献   

17.
ATP-sensitive potassium (KATP) channels play a central role in glucose-stimulated insulin secretion (GSIS) by pancreatic beta-cells. Activity of these channels is determined by their open probability (Po) and the number of channels present in a cell. Glucose is known to reduce Po, but whether it also affects the channel density is unknown. Using INS-1 model beta-cell line, we show that the expression of K(ATP) channel subunits, Kir6.2 and SUR1, is high at low glucose, but declines sharply when the ambient glucose concentration exceeds 5mM. In response to glucose deprivation, channel synthesis increases rapidly by up-regulating translation of existing mRNAs. The effects of glucose deprivation could be mimicked by pharmacological activation of 5'-AMP-activated protein kinase with 5-aminoimidazole-4-carboxamide ribonucleotide and metformin. Pancreatic beta-cells which have lost their ability for GSIS do not show such changes implicating a possible (patho-)physiological link between glucose-regulated KATP channel expression and the capacity for normal GSIS.  相似文献   

18.
The mechanism of G protein beta gamma subunit (G beta gamma)-induced activation of the muscarinic K+ channel (KACh) in the guinea pig atrial cell membrane was examined using the inside-out patch clamp technique. G beta gamma and GTP-gamma S-bound alpha subunits (G alpha *'s) of pertussis toxin (PT)-sensitive G proteins were purified from bovine brain. Either in the presence or absence of Mg2+, G beta gamma activated the KACh channel in a concentration-dependent fashion. 10 nM G beta gamma almost fully activated the channel in 132 of 134 patches (98.5%). The G beta gamma-induced maximal channel activity was equivalent to or sometimes larger than the GTP-gamma S-induced one. Half-maximal activation occurred at approximately 6 nM G beta gamma. Detergent (CHAPS) and boiled G beta gamma preparation could not activate the KACh channel. G beta gamma suspended by Lubrol PX instead of CHAPS also activated the channel. Even when G beta gamma was pretreated in Mg(2+)-free EDTA internal solution containing GDP analogues (24-48 h) to inactivate possibly contaminating G i alpha *'s, the G beta gamma activated the channel. Furthermore, G beta gamma preincubated with excessive GDP-bound G o alpha did not activate the channel. These results indicate that G beta gamma itself, but neither the detergent CHAPS nor contaminating G i alpha *, activates the KACh channel. Three different kinds of G i alpha * at 10 pM-10 nM could weakly activate the KACh channel. However, they were effective only in 40 of 124 patches (32.2%) and their maximal channel activation was approximately 20% of that induced by GTP-gamma S or G beta gamma. Thus, G i alpha * activation of the KACh channel may not be significant. On the other hand, G i alpha *'s effectively activated the ATP-sensitive K+ channel (KATP) in the ventricular cell membrane when the KATP channel was maintained phosphorylated by the internal solution containing 100 microM Mg.ATP. G beta gamma inhibited adenosine or mACh receptor-mediated, intracellular GTP-induced activation of the KATP channel. G i alpha *'s also activated the phosphorylated KATP channel in the atrial cell membrane, but did not affect the background KACh channel. G beta gamma subsequently applied to the same patch caused prominent KACh channel activation. The above results may indicate two distinct regulatory systems of cardiac K+ channels by PT-sensitive G proteins: G i alpha activation of the KATP channel and G beta gamma activation of the KACh channel.  相似文献   

19.
ATP-sensitive K(+) (K(ATP)) channels are gated by intracellular ATP, proton and phospholipids. The pore-forming Kir6.2 subunit has all essential machineries for channel gating by these ligands. It is known that channel gating involves the inner helix bundle of crossing in which a phenylalanine residue (Phe168) is found in the TM2 at the narrowest region of the ion-conduction pathway in the Kir6.2. Here we present evidence that Phe168-Kir6.2 functions as an ATP- and proton-activated gate via steric hindrance and hydrophobic interactions. Site-specific mutations of Phe168 to a small amino acid resulted in losses of the ATP- and proton-dependent gating, whereas the channel gating was well maintained after mutation to a bulky tryptophan, supporting the steric hindrance effect. The steric hindrance effect, though necessary, was insufficient for the gating, as mutating Phe168 to a bulky hydrophilic residue severely compromised the channel gating. Single-channel kinetics of the F168W mutant resembled the wild-type channel. Small residues increased P(open), and displayed long-lasting closures and long-lasting openings. Kinetic modeling showed that these resulted from stabilization of the channel to open and long-lived closed states, suggesting that a bulky and hydrophobic residue may lower the energy barrier for the switch between channel openings and closures. Thus, it is likely that the Phe168 acts as not only a steric hindrance gate but also potentially a facilitator of gating transitions in the Kir6.2 channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号