首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heightened immune response, in which immune responses are primed by repeated exposure to a pathogen, is an important characteristic of vertebrate adaptive immunity. In the present study, we examined whether invertebrate animals also exhibit a primed immune response. The LD50 of Gram-negative enterohemorrhagic Escherichia coli O157:H7 Sakai in silkworms was increased 100-fold by pre-injection of heat-killed Sakai cells. Silkworms pre-injected with heat-killed cells of a Gram-positive bacterium, Staphylococcus aureus, did not have resistance to Sakai. Silkworms preinjected with enterohemorrhagic E. coli peptidoglycans, cell surface components of bacteria, were resistant to Sakai infection. Silkworms preinjected with S. aureus peptidoglycans, however, were not resistant to Sakai. Silkworms preinjected with heat-killed Sakai cells showed persistent resistance to Sakai infection even after pupation. Repeated injection of heat-killed Sakai cells into the silkworms induced earlier and greater production of antimicrobial peptides than a single injection of heat-killed Sakai cells. These findings suggest that silkworm recognition of Gram-negative peptidoglycans leads to a primed immune reaction and increased resistance to a second round of bacterial infection.  相似文献   

2.
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.  相似文献   

3.
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management.  相似文献   

4.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

5.
The emergence and rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to the global healthcare. There is an urgent need for new antibacterial substances or new treatment strategies to deal with the infections by MDR bacterial pathogens, especially the Gram-negative pathogens. In this study, we show that a number of synthetic cationic peptides display strong synergistic antimicrobial effects with multiple antibiotics against the Gram-negative pathogen Pseudomonas aeruginosa. We found that an all-D amino acid containing peptide called D-11 increases membrane permeability by attaching to LPS and membrane phospholipids, thereby facilitating the uptake of antibiotics. Subsequently, the peptide can dissipate the proton motive force (PMF) (reducing ATP production and inhibiting the activity of efflux pumps), impairs the respiration chain, promotes the production of reactive oxygen species (ROS) in bacterial cells and induces intracellular antibiotics accumulation, ultimately resulting in cell death. By using a P. aeruginosa abscess infection model, we demonstrate enhanced therapeutic efficacies of the combination of D-11 with various antibiotics. In addition, we found that the combination of D-11 and azithromycin enhanced the inhibition of biofilm formation and the elimination of established biofilms. Our study provides a realistic treatment option for combining close-to-nature synthetic peptide adjuvants with existing antibiotics to combat infections caused by P. aeruginosa.  相似文献   

6.
The effect of Yersinia pseudotuberculosis, the bacterial pathogen affecting humans and animals, on growth of ginseng (Panax ginseng C.A. Mey) cell cultures was studied. The bacteria strongly induced the expression of phenylalanine ammonia-lyase and β-1,3-glucanase, the proteins encoded by the defense-related genes of ginseng and inhibited the normal ginseng callus growth but did not affect the resistant cell cultures. The thermostable and thermolabile protein toxins of these bacteria are lethal to mice when induced parentherally, and they also induced the expression of the defense-related genes in ginseng callus cultures. At the same time, the ginseng cells completely suppressed the bacterial cell growth. These data suggest that the ginseng cells recognized the yersinia and developed the immune response to this pathogen. The interaction between the ginseng cells and Y. pseudotuberculosis is similar to the hypersensitive response of plants to plant pathogens.  相似文献   

7.
The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III.  相似文献   

8.
The decline of European abalone Haliotis tuberculata populations has been associated with various pathogens including bacteria of the genus Vibrio. Following the summer mortality outbreaks reported in France between 1998 and 2000, Vibrio harveyi strains were isolated from moribund abalones, allowing in vivo and in vitro studies on the interactions between abalone H. tuberculata and V. harveyi. This work reports the development of primary cell cultures from abalone gill tissue, a target tissue for bacterial colonisation, and their use for in vitro study of host cell—V. harveyi interactions. Gill cells originated from four-day-old explant primary cultures were successfully sub-cultured in multi-well plates and maintained in vitro for up to 24 days. Cytological parameters, cell morphology and viability were monitored over time using flow cytometry analysis and semi-quantitative assay (XTT). Then, gill cell cultures were used to investigate in vitro the interactions with V. harveyi. The effects of two bacterial strains were evaluated on gill cells: a pathogenic bacterial strain ORM4 which is responsible for abalone mortalities and LMG7890 which is a non-pathogenic strain. Cellular responses of gill cells exposed to increasing concentrations of bacteria were evaluated by measuring mitochondrial activity (XTT assay) and phenoloxidase activity, an enzyme which is strongly involved in immune response. The ability of gill cells to phagocyte GFP-tagged V. harveyi was evaluated by flow cytometry and gill cells-V. harveyi interactions were characterized using fluorescence microscopy and transmission electron microscopy. During phagocytosis process we evidenced that V. harveyi bacteria induced significant changes in gill cells metabolism and immune response. Together, the results showed that primary cell cultures from abalone gills are suitable for in vitro study of host-pathogen interactions, providing complementary assays to in vivo experiments.  相似文献   

9.
Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI) tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC), a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS) through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome) and Gram-positive bacteria being susceptible to membrane disruption (negative outcome). This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.  相似文献   

10.
11.
Silver nanoparticles possess antibacterial effect for various bacteria; however mechanisms of the interaction between Ag-NPs and bacterial cells remain unclear. The aim of our study was to obtain direct evidence of Ag-NPs penetration into cells of Gram-negative bacterium S. typhimurium and Gram-positive bacterium S. aureus, and to study cell responses to Ag-NPs. The Ag-NPs (most 8–10 nm) were obtained by gas-jet method. S. typhimurium (7.81 × 107 CFU), or S. aureus (8.96 × 107 CFU) were treated by Ag-NPs (0.05 mg/l of silver) in orbital shaker at 190 rpm, 37 °C. Bacteria were sampled at 0.5, 1, 1.5, 2, 5 and 23 h of the incubation for transmission electron microscopy of ultrathin sections. The Ag-NPs adsorbed on outer membrane of S. typhimurium and cell wall of S. auereus; penetrated and accumulated in cells without aggregation and damaging of neighboring cytoplasm. In cells of S. aureus Ag-NPs bound with DNA fibers. Cell responses to Ag-NPs differed morphologically in S. typhimurium and S. aureus, and mainly were presented by damage of cell structures. The cytoplasm of S. aureus became amorphous, while S. typhimurium showed lumping and lysis of cytoplasm which led to formation of “empty” cells. Other difference was fast change of cell shape in S. typhimurium, and late deformation of S. aureus cells. The obtained results showed how different could be responses induced by the same NPs in relatively simple prokaryotic cells. Evidently, Ag-NPs directly interact with macromolecular structures of living cells and are exert an active influence on their metabolism.  相似文献   

12.
The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon—exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.  相似文献   

13.
14.
The double-layered cell envelope of Gram-negative bacteria and active drug efflux present a formidable barrier for antimicrobial compounds to penetrate. Fluoroquinolones are among the few classes of antimicrobials that are clinically useful in the treatment of Gram-negative bacterial infection. Previous studies on fluoroquinolone accumulation measured total bacteria associated compounds, rather than the cytoplasmic accumulation. Fluoroquinolones target the type II topoisomerases in the cytoplasm. Thus, the cytoplasmic accumulation is expected to be more relevant to the potency of the drugs. Here, we fractionated and measured the concentration of nine fluoroquinolone compounds in the periplasm and the cytoplasm of two strains of E. coli cells, a parent strain and its isogenic efflux-deficient tolC knockout strain. The potency of the drugs was determined using the minimum inhibitory concentration (MIC) assay. We found that all fluoroquinolones tested accumulated at much higher concentrations in the periplasm than in the cytoplasm. The periplasmic concentrations were 2–15 folds higher than the cytoplasmic concentration, while the actual distribution ratio varies drastically among the compounds tested. Good correlation between the MIC and the cytoplasmic accumulation, but not whole cell accumulation, was observed using a pair of isogenic wild type and drug-efflux deficient strains.  相似文献   

15.
16.
Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli.  相似文献   

17.
The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47phox−/−) mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT) and p47phox−/− mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.  相似文献   

18.
19.
Pathogenicity of the human pathogen Helicobacter pylori relies upon its capacity to adapt to a hostile environment and to escape from the host response. Therefore, cell shape, motility, and pH homeostasis of these bacteria are specifically adapted to the gastric mucus. We have found that the helical shape of H. pylori depends on coiled coil rich proteins (Ccrp), which form extended filamentous structures in vitro and in vivo, and are differentially required for the maintenance of cell morphology. We have developed an in vivo localization system for this pathogen. Consistent with a cytoskeleton-like structure, Ccrp proteins localized in a regular punctuate and static pattern within H. pylori cells. Ccrp genes show a high degree of sequence variation, which could be the reason for the morphological diversity between H. pylori strains. In contrast to other bacteria, the actin-like MreB protein is dispensable for viability in H. pylori, and does not affect cell shape, but cell length and chromosome segregation. In addition, mreB mutant cells displayed significantly reduced urease activity, and thus compromise a major pathogenicity factor of H. pylori. Our findings reveal that Ccrp proteins, but not MreB, affect cell morphology, while both cytoskeletal components affect the development of pathogenicity factors and/or cell cycle progression.  相似文献   

20.
Interleukin-17 (IL-17) is produced by a subset of CD4+ T helper (Th) lymphocytes known as Th17 cells. In humans, IL-1β, enhanced by IL-6 and IL-23 is crucial for differentiation of these cells. IL-17 evokes inflammation and is involved in host defence against microorganisms, although little is known about its role in diseases caused by non-tuberculous mycobacteria. The genus Mycobacterium contains both obligate and opportunistic pathogens as well as saprophytes, and the mycobacterial cell envelope is unique in its abundance of lipids. Here we investigated IL-17 and IL-23 production in human PBMC in response to intact UV-inactivated mycobacteria and mycobacterial surface lipids from two opportunistic (Mycobacterium avium and Mycobacterium abscessus) and one generally non-pathogenic (Mycobacterium gordonae) species. Representative Gram-positive (Enterococcus faecalis, Streptococcus mitis) and Gram-negative (Escherichia coli) bacteria were included as controls. Intact mycobacteria induced production of large amounts of IL-17, while IL-17 responses to control bacteria were negligible. Purified CD4+ T cells, but not CD4-depleted cell fractions, produced this IL-17. Isolated mycobacterial surface lipids induced IL-17, but not IL-23 production. The ability of the non-tuberculous mycobacteria to induce IL-17 production in CD4+ T cells was the same regardless of the pathogenic potential of the particular mycobacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号