首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FAM176A (family with sequence similarity 176 member A) is a novel molecule related to programmed cell death. A decreased expression of FAM176A has been found in several types of human tumors in including lung cancers. In the present study, we investigated the biological activities of FAM176A on the human non–small cell lung cancer cell line H1299 cells. We constructed a recombinant adenovirus 5-FAM176A vector (Ad5-FAM176A) and evaluated the expression and anti-tumor activities in vitro. Cell viability analysis revealed that the adenovirus-mediated increase of FAM176A inhibited the growth of the tumor cells in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy and apoptosis that involved caspase activation. In addition, cell cycle analysis suggested that Ad5-FAM176A could induce cell cycle arrest at the G2/M phase, all of which suggested that adenovirus-mediated FAM176A gene transfer might present a new therapeutic approach for lung cancer treatment. [BMB Reports 2014; 47(2): 104-109]  相似文献   

2.
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.Artemisinin, a sesquiterpene lactone isolated from the Chinese herb Artemisia annua L., has profound activity against malaria.1 Artemisinin contains an endoperoxide moiety that reacts with iron to produce toxic reactive oxygen species (ROS). When malaria parasite (Plasmodia) consumes iron-rich haemoglobin within its acidic food vacuole in erythrocytes, the exposure of artemisinin to haem-derived iron results in lethal ROS production that exerts fatal toxicity to the parasite.2 Therefore, artemisinin, its water-soluble derivative artesunate (ART) and other analogues are potent in killing malarial parasites.1,3Cancer cells contain substantial free iron, resulting from their higher-rate iron uptake via transferrin receptors compared with normal cells. Therefore, artemisinin-based drugs such as ART possess selective toxicity to cancer cells.4, 5, 6 Importantly, the pharmacokinetics and tolerance of ART as an anti-malarial drug have been well documented, with clinical studies showing excellent safety. Collectively, these properties make artemisinin-based compounds attractive drug candidates for cancer chemotherapy. Artemisinin and ART have been shown to induce cell death in multiple cancer cells, including colon, breast, ovarian, prostate,7 pancreatic8 and leukaemia9 cancer cells. Preliminary in vivo experiments also indicate the therapeutic potential for these drugs as anti-cancer treatments. In animal models, artemisinin or ART has shown promising results in Kaposi Sarcoma,10 pancreatic cancer11 and hepatoma,12 while compassionate use of ART in uveal melanoma patients fortifies standard chemotherapy potential for the patients.13 Currently, ART is on clinical trial for breast cancer treatment (ClinicalTrials.gov ID: NCT00764036).Programmed cell death (PCD) is one of the critical terminal paths for the cells of metazoans. Among PCD, apoptosis has been well studied and it is known that caspase activation is essential in this process.14 In addition to apoptosis, necroptosis is another form of PCD. The RIP1-RIP3 complex highlights the signals that regulate necroptosis.15, 16, 17 Artemisinin derivatives, mostly ART, have been suggested to lead to apoptosis via ROS production in cancer cells. Efforts have been focused on ROS-mediated mitochondrial apoptosis,9,18,19 and DNA damage20 in cancer cells. Recent data suggest that artemisinin and its derivatives may induce cell death or inhibit proliferation through diverse mechanisms in different cell types. Artemisinin or its analogues were shown to inhibit cell proliferation in multiple cancer cells by regulating cell-cycle arrest21, 22, 23 or inducing apoptosis.24,25 Nevertheless, the detailed molecular mechanisms underlying artemisinin or ART-induced cell death are poorly understood, thus need to be further addressed.Neurofibromatosis 2 (NF2) is caused by the loss of NF2 gene encoding Merlin protein. NF2 gene mutations cause the low grade tumour syndrome, composed of schwannomas, meningiomas and ependymomas.26 All spontaneous schwannomas, the majority of meningiomas and a third of ependymomas are caused by NF2 gene mutations. Notably, approximately 10% of intracranial tumours are schwannomas.27 Interestingly, NF2 gene mutations are also found in a variety of cancers, including breast cancer and mesothelioma.28, 29, 30 The low grade tumours caused by NF2 gene mutations do not respond well to current cancer drugs and therapy is restricted to surgery and radiosurgery.26 Therefore, there is a need for drug treatment of the diseases. Here, we show that ART sufficiently induced schwannoma cell death in both RT4 cell line and human primary cells. Importantly, we show, for the first time, that ART-induced cell death is largely dependent on necroptosis. Our data suggest that ART has great potential in schwannoma chemotherapy, especially when used in synergy with an apoptosis-inducing drug and/or an autophagy-inhibitory drug.  相似文献   

3.
《Autophagy》2013,9(2):173-183
Platonin is a photosensitizer used for photodynamic therapy. In this study, we tested the effect of platonin on human leukemic cells. Treatment with platonin in the dark markedly reduced cell membrane integrity, and induced significant G0/G1 arrest of a panel of human leukemic cell lines, including U937, HL-60, K562, NB4 and THP-1. Development of hypodiploid cells was not evident in these cell lines within 24 h, but was noted in U937, HL-60 and NB4 cells after 24 h. No myeloid differentiation of these cells was noted after 5-day treatment. Intriguingly, exposure of monoblastic U937 cells to platonin caused changes characteristic of autophagy, including appearance of cytoplasmic membranous vacuoles and formation of acidic vesicular organelles (AVO) in more than 95% of cells. The platonin-induced autophagy was accompanied by localization of microtubule-associated protein 1 light chain 3 to autophagosomes. Pretreatment with pancaspase inhibitor Z-VAD-fmk abrogated the platonin-induced hypodiploidity, but had no effect on growth inhibition and formation of AVO, indicating a caspase-independent autophagy-associated cell death. Pretreatment of cells with 3-methyladenine attenuated platonin-mediated growth inhibition and formation of AVO. Platonin augmented the expression of BNIP3 in both U937 and K562 cells, whereas had an opposite effect on phosphorylation of mTOR downstream molecule p70S6K. Platonin, at the condition inducing autophagy, induced the mitochondrial membrane permeation. These results suggest that the platonin is capable of inhibiting growth as well as inducing cell death, mainly autophagy-associated, in leukemic cells via a mitochondria-mediated and caspase-independent pathway. A markedly less viability inhibition was noted to human monocytes, the normal counterpart of these myeloid leukemic cells. Platonin, other than a photodynamic agent, may offer significant promise as a therapeutic agent against leukemia.  相似文献   

4.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

5.
The aim of this study is to explore the mechanism by which acrolein (ACR), a metabolite of cyclophosphamide (CP), induces immature Sertoli cell cytoskeletal changes. Sertoli cells obtained from rats were cultivated and treated with 50 and 100 μM ACR. XTT assays were performed to detect cell viability. Activities of superoxide dismutase (SOD), glutathione peroxidases (GSH-Px), and catalase (CAT), as well as total anti-oxidation competence (T-AOC) were examined. Superoxide anion levels were detected by a fluorescent probe. Cell ultrastructure changes were observed by transmission fluorescent microscope. Actin filament (F-actin) distribution was detected by immunofluorescence, and ERK and p38MAPK expression were detected by western blot analysis. ACR significantly decreased the viability of Sertoli cells in a dose- and time-dependent manner. T-AOC and the antioxidant activity of SOD, CAT and GSH-Px, were decreased in ACR-treated groups compared with the control group. The levels of reactive oxygen species (ROS) in ACR-treated Sertoli cells were increased. In addition, characteristics of cell apoptosis such as mitochondrial swelling, aggregated chromatin, condensed cytoplasm, nuclei splitting, and nuclei vacuolization were observed in ACR-treated cells. Furthermore, ACR-treatment also induced microfilament aggregation, marginalization and regionalization. The expression levels of ERK and p38MAPK were also increased in ACR-treated cells in a dose- and time-dependent manner. ACR, a major CP metabolite, impairs the cytoskeleton which is likely caused by induction of the oxidative stress response through up-regulation of ERK and p38MAPK expression.  相似文献   

6.
Damaged endothelium is one of the pathological changes of the cerebral vasospastic vessels following subarachnoid hemorrhage. Our recent study shows that oxyhemoglobin (OxyHb) induces apoptosis in vascular endothelial cells. Apoptosis generally requires the action of various classes of proteases, including a family of cysteine proteases, known collectively as the caspases. This study was undertaken to investigate the activation of caspases and the efficacy of caspase inhibitors, z-IETD-fmk and z-LEHD-fmk, for oxyhemoglobin-induced apoptosis in vascular endothelial cells. Cultured bovine brain microvascular endothelial cells (passages 5-9) were used for this study. OxyHb (10 micromol/L) was added during the 24-72 h incubation with and without caspase-8 or - 9 inhibitors (z-IETD-fmk and z-LEHD-fmk). Counting surviving cells, DNA laddering, western blotting of poly(ADP-ribose) polymerase, and measurement of caspase activities were employed to confirm the cytotoxic effects of OxyHb and the protective effects of the caspase inhibitors. OxyHb produced cell detachment in a time-dependent manner and increased caspase-8 and -9 activities in the cells. z-IETD-fmk and z-LEHD-fmk (100 micromol/L) attenuated OxyHb-induced cell loss, DNA laddering, and proteolytic cleavage of PARP, although a lower concentration (10 micromol/L) of caspase inhibitors showed partial effects. OxyHb activates caspase-8 and -9 in cultured vascular endothelial cells, and blocking the action of the caspases with the inhibitors efficiently prevents loss of vascular endothelial cells from OxyHb-induced apoptosis in vitro. These results suggest that the caspase cascade participates in OxyHb-induced apoptosis.  相似文献   

7.
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.  相似文献   

8.
Daidoji T  Koma T  Du A  Yang CS  Ueda M  Ikuta K  Nakaya T 《Journal of virology》2008,82(22):11294-11307
In recent years, the highly pathogenic avian influenza virus H5N1 has raised serious worldwide concern about an influenza pandemic; however, the biology of H5N1 pathogenesis is largely unknown. To elucidate the mechanism of H5N1 pathogenesis, we prepared primary airway epithelial cells from alveolar tissues from 1-year-old pigs and measured the growth kinetics of three avian H5 influenza viruses (A/Crow/Kyoto/53/2004 [H5N1], A/Duck/Hong Kong/342/78 [H5N2], and A/Duck/Hong Kong/820/80 [H5N3]), the resultant cytopathicity, and possible associated mechanisms. H5N1, but not the other H5 viruses, strongly induced cell death in porcine alveolar epithelial cells (pAEpC), although all three viruses induced similar degrees of cytopathicity in chicken embryonic fibroblasts. Intracellular viral growth and the production of progeny viruses were comparable in pAEpC infected with each H5 virus. In contrast, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling-positive cells were detected only in H5N1-infected pAEpC, and the activities of caspases 3, 8, and 9 were significantly elevated in pAEpC infected with H5N1, but not with H5N2 and H5N3. These results suggest that only H5N1 induces apoptosis in pAEpC. H5N1 cytopathicity was inhibited by adding the caspase inhibitor z-VAD-FMK; however, there were no significant differences in viral growth or release of progeny viruses. Further investigations using reverse genetics demonstrated that H5N1 hemagglutinin protein plays a critical role in inducing caspase-dependent apoptosis in infected pAEpC. H5N1-specific cytopathicity was also observed in human primary airway epithelial cells. Taken together, these data suggest that avian H5N1 influenza virus leads to substantial cell death in mammalian airway epithelial cells due to the induction of apoptosis.  相似文献   

9.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   

10.
The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

11.
《Autophagy》2013,9(4):435-441
The elimination of tumour cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumour cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

12.
The programmed cell death inducing effect of the EGF receptor tyrosine kinase inhibitor α-cyano-3,4-dihydroxycinnamthioamide (AG213) was investigated in vitro on HT-29 human colon tumor. AG213 at concentrations between 45 to 450 μM blocks the proliferation of HT-29 cells. Morphological findings suggest that the selective tyrosine kinase inhibitor AG213 induces Clarke III type (non-lysosomal vesiculate cytoplasmic) programmed cell death; unlike ATP analog non-selective tyrosine kinase inhibitors like Genistein which were found to induce apoptosis. Cycloheximide and Actinomycin-D reduced the effect of AG213 pointing to the fact that protein and RNA synthesis are also needed for this form of cell death. Acid phosphatase activity was found in the Golgi and in the newly formed intracytoplasmic vacuoles 3 hours after AG213 treatment which disappeared by 6 hours. The induction of Clarke III cell death by tyrosine kinase inhibitors may open a new modality to selective killing of tumor cells.  相似文献   

13.

Background

Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP.

Methods

We treated human intestinal epithelial cells with ATP and evaluated the effects of this nucleotide by scanning and transmission electron microscopy analysis and calcium measurements. We used flow cytometry to evaluate apoptosis. We collected human intestinal explants for immunohistochemistry, apoptosis by the TUNEL approach and caspase-3 activity using flow cytometry analyses. We also evaluated the ROS production by flow cytometry and NO secretion by the Griess technique.

Results

ATP treatment induced changes characteristic of cell death by apoptosis and autophagy but not necrosis in the HCT8 cell line. ATP induced apoptosis in human intestinal explants that showed TUNEL-positive cells in the epithelium and in the lamina propria. The explants exhibited a significant increase of caspase-3 activity when the colonic epithelial cells were incubated with IFN-gamma followed by ATP as compared to control cells. In addition, it was found that antioxidants were able to inhibit both the ROS production and the apoptosis induced by ATP in epithelial cells.

General significance

The activation of P2X7 receptors by ATP induces apoptosis and autophagy in human epithelial cells, possibly via ROS production, and this effect might have implications for gut inflammatory conditions.  相似文献   

14.
ONC201/TIC10 is a small molecule initially discovered by its ability to coordinately induce and activate the TRAIL pathway selectively in tumor cells and has recently entered clinical trials in adult advanced cancers. The anti-tumor activity of ONC201 has previously been demonstrated in several preclinical models of cancer, including refractory solid tumors and a transgenic lymphoma mouse model. Based on the need for new safe and effective therapies in pediatric non-Hodgkin''s lymphoma (NHL) and the non-toxic preclinical profile of ONC201, we investigated the in vitro efficacy of ONC201 in non-Hodgkin''s lymphoma (NHL) cell lines to evaluate its therapeutic potential for this disease. ONC201 caused a dose-dependent reduction in the cell viability of NHL cell lines that resulted from induction of apoptosis. As expected from prior observations, induction of TRAIL and its receptor DR5 was also observed in these cell lines. Furthermore, dual induction of TRAIL and DR5 appeared to drive the observed apoptosis and TRAIL expression was correlated linearly with sub-G1 DNA content, suggesting its potential role as a biomarker of tumor response to ONC201-treated lymphoma cells. We further investigated combinations of ONC201 with approved chemotherapeutic agents used to treat lymphoma. ONC201 exhibited synergy in combination with the anti-metabolic agent cytarabine in vitro, in addition to cooperating with other therapies. Together these findings indicate that ONC201 is an effective TRAIL pathway-inducer as a monoagent that can be combined with chemotherapy to enhance therapeutic responses in pediatric NHL.  相似文献   

15.
To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process.  相似文献   

16.
Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.  相似文献   

17.
Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised.  相似文献   

18.
Endostatin induces autophagic cell death in EAhy926 human endothelial cells   总被引:8,自引:0,他引:8  
Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and suppresses neovascularization and tumor growth. However, the inhibitory mechanism of endostatin in human endothelial cells has not been characterized yet. Electron microscopic analysis revealed that endostatin induced formation of numerous autophagic vacuoles in endothelial in 6 to 24 h after treatment. Moreover, there was only a 2- to 3-fold increase in intracellular reactive oxygen species after endostatin treatment. Endostatin-induced cell death was not prevented by antioxidants (vitamin C, vitamin E, or propyl gallate) or caspase inhibitors, suggesting that the increase of oxidative stress or the activation of caspases may not be the crucial factors in the anti-angiogenic mechanism of endostatin. However, the cytotoxicity of endostatin was significantly reduced by 3-methyladenine (a specific inhibitor of autophagy) and serine and cysteine lysosomal protease inhibitors (leupeptin and aprotinin). Taken together, these results suggest that in human endothelial cells: (1) endostatin predominantly causes autophagic, rather than apoptotic, cell death, (2) endostatin-induced autophagic cell death occurs in the absence of caspase activation and through an oxidative-independent pathway, and (3) endostatin-induced "autophagic cell death" or "type 2 physiological cell death" is regulated by serine and cysteine lysosomal proteases.  相似文献   

19.
Several neurodegenerative diseases including Huntington disease, Machado-Joseph disease and spinocerebellar ataxias type 1 are caused by expansion of a polyglutamine tract within their respective gene products. In order to assess the role of the tract, 293T cells were transfected with plasmids that contain various lengths of CAG repeat encoding polyglutamine without the repeat disorder proteins: (CAG)27, (CAG)40, (CAG)80, (CAG)130, and (CAG)180. Except for (CAG)27, and (CAG)40, 293T cells showed a common set of morphological alterations such as shrinkage, rounding and surface blebbing when the expanded stretch was expressed. In addition, nuclear staining experiments showed chromatin condensation in COS-7 cells transfected with the vectors containing expanded CAG repeats. These results indicate that expanded polyglutamine itself is able to induce cell death, suggesting existence of a common molecular mechanism in the etiology of neurodegenerative polyglutamine diseases.  相似文献   

20.
Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号