首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
We recently reported that necrotic renal proximal tubular cells (RPTC) can induce the death of renal interstitial fibroblasts. Since autophagy plays either cytoprotective or cytodestructive roles depending on the experimental condition, the present study was carried out to investigate whether necrotic RPTC would induce autophagy of renal interstitial fibroblasts and, if so, whether autophagy would contribute to cell death or exert a protective effect. Exposure of necrotic RPTC supernatant (RPTC-Sup) induced autophagy in renal interstitial fibroblast cells (NRK-49F) in a time- and dose-dependent manner, and its induction was earlier than caspase-3 activation. Inhibition of autophagy with 3-methyladenine (3-MA) or knockdown of Beclin-1, a molecule involved in the initiation of autophagosome formation, with small interference RNA (siRNA) significantly enhanced necrotic RPTC-Sup-induced cell death. Necrotic RPTC-Sup induced phosphorylation of extracellular signal-regulated kinases (ERK1/2), p38, c-Jun NH(2)-terminal kinases (JNKs), and AKT. Treatment with an ERK1/2 pathway inhibitor, but not with specific inhibitors for p38, JNKs, or AKT pathways, blocked NRK-49F autophagy and cell death upon exposure to necrotic RPTC-Sup. Furthermore, knockdown of MEK1 with siRNA also reduced autophagy along with cell death in NRK-49F exposed to necrotic RPTC-Sup. In contrast, overexpression of MEK1/2 increased RPTC-Sup-induced fibroblast cell death without enhancing autophagy. Collectively, this study demonstrates that necrotic RPTC induce both autophagy and cell death and that autophagy plays a cytoprotective or prosurvival role in renal fibroblasts. Furthermore, necrotic RPTC-induced autophagy and cell death in renal fibroblasts is mediated by the activation of the MEK1-ERK1/2 signaling pathway.  相似文献   

3.
4.
Previously, we showed that Janus kinase 2 (JAK2) is important in advanced glycation end-product (AGE)-induced effects in renal interstitial (NRK-49F) fibroblasts. Leptin is a JAK2-activating cytokine via the long form leptin receptor (Ob-Rb). Leptin and connective tissue growth factor (CTGF) may be involved in renal fibrosis. However, the relationship between leptin and CTGF in terms of AGE-induced effects remains unknown. Thus, the effects of AGE (150 microg/ml) and leptin on mitogenesis, CTGF and collagen expression in NRK-49F cells were determined. We found that leptin and AGE increased mitogenesis and type I collagen protein expression at 3 and 7 days, respectively. AGE increased leptin mRNA and protein expression at 2-3 days. AGE increased CTGF mRNA and protein expression at 3-5 days. AG-490 (JAK2 inhibitor) abrogated AGE-induced leptin mRNA and protein expression at 2-3 days. AG-490 and Ob-Rb anti-sense oligodeoxynucleotides (ODN) abrogated AGE-induced CTGF mRNA and protein expression at 3-5 days. AG-490 and CTGF anti-sense ODN abrogated AGE-induced mitogenesis and collagen protein expression at 7 days. Additionally, leptin dose (0.2-1 microg/ml) and time (1-2 days)-dependently increased CTGF protein expression. AG-490 abrogated leptin (1 microg/ml)-induced CTGF protein expression at 2 days. AG-490 and CTGF anti-sense ODN abrogated leptin-induced mitogenesis and collagen protein expression at 3 days. We concluded that AGE induced JAK2 to increase leptin while leptin induced JAK2 to increase CTGF-induced mitogenesis and type I collagen protein expression in NRK-49F cells. Additionally, AGE-induced mitogenesis and type I collagen protein expression were dependent on leptin-induced CTGF.  相似文献   

5.
Studies have implicated that lipoxinA4 (LXA4) inhibited nuclear factor-kappaB (NF-kappaB), Akt/PKB and PI 3-kinase activity and proliferation of glomerular mesangial cells. It is speculated that LXA4 might serve as pro-apoptotic factor. Rat renal interstitial fibroblasts (NRK-49F cells) were exposed to LXA4 in 5% FCS for 24 h. LXA4 at 0.1 and 1 microM induced 9.83% and 33.82% apoptosis of the cells, respectively, upregulated the expression of calpain 10 and Smac, the levels of [Ca2+]i and activity of caspase-3, and downregulated the activity of STAT3 and threonine phosphorylated Akt1. Transfection of calpain 10 or Smac antisense oligodeoxynucleotide into the cells inhibited the LXA4-induced apoptosis, activity of caspase-3. Pretreatment of the cells with calcium inhibitor SK&F96365 inhibited the LXA4-induced apoptosis, levels of [Ca2+]i, expression of calpain 10 and Smac. In conclusion, LXA4 at high concentrations induced apoptosis of renal interstitial fibroblasts via [Ca2+]i-dependent upregulation of calpain 10 and Smac expression.  相似文献   

6.
7.
Interleukin (IL)-10 is an anti-inflammatory factor that suppresses renal fibrosis and improves renal function in CKD rats. IL-20 belongs to the IL-10 family; therefore, we sought to determine whether IL-20 is involved in CKD. CKD patients at stage five expressed significantly higher IL-20 in serum than controls. Immunohistochemical staining demonstrated that more IL-20 protein was expressed in the kidney tubular-epithelial cells, mesangial cells, and immune cells of CKD rats with a 5/6 nephrectomy. The lung, liver, and heart tissue of CKD rats also overexpressed IL-20. Thus, we treated two tubular epithelial cells, TKPTS and M-1 cells, with IL-20 to study its effects on CKD. IL-20 treatment induced apoptosis in these cells via caspase-3 activation. Incubating IL-20 with rat interstitial fibroblasts, NRK-49F cells, upregulated TGF-β1production, one key inducer for renal fibrogenesis. Therefore, IL-20 injured renal epithelial cells and induced fibroblasts to produce TGF-β1 that hastened the progression of CKD.  相似文献   

8.
Unilateral ischemia reperfusion injury (UIRI) with longer ischemia time is associated with an increased risk of acute renal injury and chronic kidney disease. Exosomes can transport lipid, protein, mRNA, and miRNA to corresponding target cells and mediate intercellular information exchange. In this study, we aimed to investigate whether exosome-derived miRNA mediates epithelial-mesenchymal cell communication relevant to renal fibrosis after UIRI. The secretion of exosomes increased remarkably in the kidney after UIRI and in rat renal tubular epithelium cells (NRK-52E) after hypoxia treatment. The inhibition of exosome secretion by Rab27a knockout or GW4869 treatment ameliorates renal fibrosis following UIRI in vivo. Purified exosomes from NRK-52E cells after hypoxia treatment could activate rat kidney fibroblasts (NRK-49F). The inhibition of exosome secretion in hypoxic NRK-52E cells through Rab27a knockdown or GW4869 treatment abolished NRK-49F cell activation. Interestingly, exosomal miRNA array analysis revealed that miR-150-5p expression was increased after hypoxia compared with the control group. The inhibition of exosomal miR-150-5p abolished the ability of hypoxic NRK-52E cells to promote NRK-49F cell activation in vitro, injections of miR-150-5p enriched exosomes from hypoxic NRK-52E cells aggravated renal fibrosis following UIRI, and renal fibrosis after UIRI was alleviated by miR-150-5p-deficient exosome in vivo. Furthermore, tubular cell-derived exosomal miR-150-5p could negatively regulate the expression of suppressor of cytokine signaling 1 to activate fibroblast. Thus, our results suggest that the blockade of exosomal miR-150-5p mediated tubular epithelial cell-fibroblast communication may provide a novel therapeutic target to prevents UIRI progression to renal fibrosis.  相似文献   

9.
10.
11.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

12.
Activation of interstitial myofibroblasts and excessive production of extracellular matrix proteins are common pathways that contribute to chronic kidney disease. In a number of tissues, AMP-activated kinase (AMPK) activation has been shown to inhibit fibrosis. Here, we examined the inhibitory effect of the AMPK activator, 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), on renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. A unilateral ureteral obstruction (UUO) model was induced in male BALB/c mice. Mice with UUO were administered AICAR (500 mg/Kg/day) or saline intraperitoneally 1 day before UUO surgery and daily thereafter. Both kidneys were harvested 7 days after surgery for further analysis. For the in vitro studies, NRK-49F rat fibroblasts were pre-incubated with AICAR before TGF-β1 stimulation. The inhibitory effects of AICAR on signaling pathways down-stream of TGF-β1 were analyzed. In UUO model mice, administration of AICAR attenuated extracellular matrix protein deposition and the expression of α-smooth muscle actin (α-SMA), type I collagen and fibronectin. Pre-incubation of NRK-49F cells with AICAR inhibited TGF-β1-induced myofibroblast activation. Silencing of AMPKα1 by siRNA or by blocking AMPK activation with Compound C diminished the inhibitory effect of AICAR. Moreover, the inhibitory effects of AICAR on TGF-β1-mediated myofibroblast activation were associated with down-regulation of ERK 1/2 and STAT3. Our results suggest that AICAR reduces tubulointerstitial fibrosis in UUO mice and inhibits TGF-β1-induced kidney myofibroblast activation. AMPK activation by AICAR may have therapeutic potential for the treatment of renal tubulointerstitial fibrosis.  相似文献   

13.
14.
《Phytomedicine》2014,21(3):372-378
Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis.  相似文献   

15.
Sphingosine kinases (Sphks) are the rate-limiting enzymes in the conversion of sphingosine to biologically active sphingosine-1-phosphate. The present study aimed to determine the role of Sphk2 and its downstream targets in renal fibroblast activation and interstitial fibrosis. In the kidney interstitium of patients with renal fibrosis, Sphk2high-expressing cells (mainly interstitial fibroblasts) were significantly elevated and highly correlated with disease progression in patients. In a murine model of renal interstitial fibrosis, Sphk2 was upregulated in the kidney of wild-type mice in response to disease progression. Importantly, Sphk2-knockout (KO) mice exhibited significantly lower levels of extracellular matrix (ECM) production and a suppressed inflammatory response in the kidney tissues, compared to those in their wild-type counterparts, whereas the expression of TGF-β1 was unaffected. TGF-β1 effectively upregulated Sphk2 expression in the renal interstitial fibroblast line, NRK-49F, independent of canonical Smad signaling activation. Furthermore, siRNA-mediated Sphk2 knockdown or suppression of Sphk2 activity by ABC294640 exposure effectively attenuated AKT and STAT3 activation and ECM production, but had no effects on Smad2 and Smad3 activation. Sphk2 phosphorylated Fyn to activate downstream STAT3 and AKT, thereby promoting ECM synthesis. Therefore, our findings indicate that targeting Sphk2-Fyn-STAT3/AKT signaling pathway may be a novel therapeutic approach for renal fibrosis.  相似文献   

16.
Tissue plasminogen activator (tPA) is an essential component of the proteolytic cascade that lyses blood clots. Various studies also suggest that tPA plays important roles in peripheral nerve regeneration. Here we show that disruption of tPA gene reduces macrophage migration after sciatic nerve injury in mice. Moreover, lack of tPA activity attenuates migrating ability of macrophages and affects MMP-9 expression and activity in macrophages in vitro. Addition of ethylenediaminetetraacetic acid (EDTA), which inhibits MMPs, abolished the differences of migration ability of macrophages between tPA(+/+) and tPA(-/-) mice. Axonal regeneration is correlated with the increase of macrophage migration, suggesting that tPA may help create a beneficial environment for axonal regeneration through promoting macrophage infiltration. This study shows that tPA may play a role in nerve regeneration through regulating the migration ability of macrophages. This function of tPA may depend on, at least in part, upregulating MMP-9 expression and activity in macrophages.  相似文献   

17.
Diabetic nephropathy (DN) is characterized by glomerulopathy and tubulointerstitial expansion followed by renal fibrosis. Angiotensin II (Ang II) and connective tissue growth factor (CTGF) are involved in the pathogenesis of DN, while Janus kinase 2 (JAK2) is important in advanced glycation end-product (AGE)-induced effects in renal interstitial (NRK-49F) fibroblasts. Thus, we studied the role of Ang II, CTGF, and JAK2 in AGE-induced effects in NRK-49F cells. We found that AGE (150 microg/ml) increased mitogenesis and type I collagen production at 7 days while Ang II (10(-7)M) increased mitogenesis and type I collagen production at 3 days. We also found that AGE (150 microg/ml) increased angiotensinogen protein at 2 days, which was attenuated by AG-490 (a JAK2 inhibitor). AGE (150 microg/ml) increased CTGF mRNA and protein expression at 3 and 5 days, respectively. Ang II (10(-7)M) increased CTGF mRNA and protein expression at 1 and 2 days, respectively, which were attenuated by AG-490. Moreover, losartan (a type I angiotensin receptor blocker) and captopril (an angiotensin converting enzyme inhibitor) attenuated AGE-induced CTGF mRNA/protein expression while attenuating AGE-induced mitogenesis and type I collagen production. AG-490 and CTGF antisense (but not sense) oligodeoxynucleotide (ODN) attenuated Ang II (10(-7)M) and AGE-induced mitogenesis and type I collagen production at 3 and 7 days, respectively. We concluded that AGE (150 microg/ml)-induced mitogenesis and type I collagen production are dependent on the Ang II-JAK2-CTGF pathway in NRK-49F cells. Moreover, Ang II-induced mitogenesis and type I collagen production are dependent on the JAK2-CTGF pathway.  相似文献   

18.
Fibroblast-myofibroblast transdifferentiation (FMT) is widely recognized as the major pathological feature of renal fibrosis. Although melatonin has exerted antifibrogenic activity in many diseases, its role in renal FMT remains unclear. In the present study, the aim was to explore the effect of melatonin on renal FMT and the underlying mechanisms. We established the transforming growth factor (TGF)-β1 stimulated rat renal fibroblast cells (NRK-49F) model in vitro and unilateral ureteral obstruction (UUO) mice model in vivo. We assessed levels of α-smooth muscle actin (α-SMA), col1a1 and fibronectin, STAT3 and AP-1, as well as miR-21-5p and its target genes (Spry1, PTEN, Smurf2 and PDCD4). We found that melatonin reduced the expression of α-SMA, col1a1 and fibronectin, as well as the formation of α-SMA filament in TGF-β1-treated NRK-49F cells. Meanwhile, melatonin inhibited STAT3 phosphorylation, down-regulated miR-21-5p expression, and up-regulated Spry1 and PTEN expression. Moreover, miR-21-5p mimics partially antagonized the anti-fibrotic effect of melatonin. For animal experiments, the results revealed that melatonin remarkably ameliorated UUO-induced renal fibrosis, attenuated the expression of miR-21-5p and pro-fibrotic proteins and elevated Spry1 and PTEN expression. Nevertheless, agomir of miR-21-5p blocked the renoprotective effect of melatonin in UUO mice. These results indicated that melatonin could alleviate TGF-β1-induced renal FMT and UUO-induced renal fibrosis through down-regulation of miR-21-5p. Regulation of miR-21-5p/PTEN and/or miR-21-5p/Spry1 signal might be involved in the anti-fibrotic effect of melatonin in the kidneys of UUO mice.  相似文献   

19.
BackgroundIn chronic kidney disease, although fibrosis prevention is beneficial, few interventions are available that specifically target fibrogenesis. Poricoic acid A (PAA) isolated from Poria cocos exhibits anti-fibrotic effects in the kidney, however the underlying mechanisms remain obscure.PurposeWe isolated PAA and investigated its effects and the underlying mechanisms in renal fibrosis.Study designUnilateral ureteral obstruction (UUO) and 5/6 nephrectomy (Nx) animal models and TGF-β1-induced renal fibroblasts (NRK-49F) were used to investigate the anti-fibrotic activity of PAA and its underlying mechanisms.MethodsWestern blots, qRT-PCR, immunofluorescence staining, co-immunoprecipitation and molecular docking methods were used. Knock-down and knock-in of adenosine monophosphate-activated protein kinase (AMPK) in the UUO model and cultured NRK-49F cells were employed to verify the mechanisms of action of PAA.ResultsPAA improved renal function and alleviated fibrosis by stimulating AMPK and inhibiting Smad3 specifically in Nx and UUO models. Reduced AMPK activity was associated with Smad3 induction, fibroblast activation, and the accumulation and aberrant remodelling of extracellular matrix (ECM) in human renal puncture samples and cultured NRK-49F cells. PAA stimulated AMPK activity and decreased fibrosis in a dose-dependent manner, thus showing that AMPK was essential for PAA to exert its anti-fibrotic effects. AMPK deficiency reduced the anti-fibrotic effects of PAA, while AMPK overexpression enhanced its effect.ConclusionPAA activated AMPK and further inhibited Smad3 specifically to suppress fibrosis by preventing aberrant ECM accumulation and remodelling and facilitating the deactivation of fibroblasts.  相似文献   

20.
Adhesion of human primary skin fibroblasts and ECV304 endothelial cells to immobilized matrix proteins, beta1 or alphav integrin antibodies stimulates tyrosine phosphorylation of the epidermal growth factor (EGF) receptor. This tyrosine phosphorylation is transiently induced, reaching maximal levels 30 min after adhesion, and it occurs in the absence of receptor ligands. Similar results were observed with EGF receptor-transfected NIH-3T3 cells. Use of a kinase-negative EGF receptor mutant demonstrates that the integrin-stimulated tyrosine phosphorylation is due to activation of the receptor's intrinsic kinase activity. Integrin-mediated EGF receptor activation leads to Erk-1/MAP kinase induction, as shown by treatment with the specific inhibitor tyrphostin AG1478 and by expression of a dominant-negative EGF receptor mutant. EGF receptor and Erk-1/MAP kinase activation by integrins does not lead per se to cell proliferation, but is important for entry into S phase in response to EGF or serum. EGF receptor activation is also required for extracellular matrix-mediated cell survival. Adhesion-dependent MAP kinase activation and survival are regulated through EGF receptor activation in cells expressing this molecule above a threshold level (5x10(3) receptors per cell). These results demonstrate that integrin-dependent EGF receptor activation is a novel signaling mechanism involved in cell survival and proliferation in response to extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号