首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

2.
The binding of horse heart cytochrome c to yeast cytochrome c peroxidase in which the heme group was replaced by protoporphyrin IX was determined by a fluorescence quenching technique. The association between ferricytochrome c and cytochrome c peroxidase was investigated at pH 6.0 in cacodylate/KNO3 buffers. Ionic strength was varied between 3.5 mM and 1.0 M. No binding occurs at 1.0 M ionic strength although there was a substantial decrease in fluorescence intensity due to the inner filter effect. After correcting for the inner filter effect, significant quenching of porphyrin cytochrome c peroxidase fluorescence by ferricytochrome c was observed at 0.1 M ionic strength and below. The quenching could be described by 1:1 complex formation between the two proteins. Values of the equilibrium dissociation constant determined from the fluorescence quenching data are in excellent agreement with those determined previously for the native enzyme-ferricytochrome c complex at pH 6.0 by difference spectrophotometry (J. E. Erman and L. B. Vitello (1980) J. Biol. Chem. 225, 6224-6227). The binding of both ferri- and ferrocytochrome c to cytochrome c peroxidase was investigated at pH 7.5 as functions of ionic strength in phosphate/KNO3 buffers using the fluorescence quenching technique. The binding in independent of the redox state of cytochrome c between 10 and 20 mM ionic strength, but ferricytochrome c binds with greater affinity at 30 mM ionic strength and above.  相似文献   

3.
Wang X  Pielak GJ 《Biochemistry》1999,38(51):16876-16881
We used isothermal titration calorimetry to study the equilibrium thermodynamics for formation of the physiologically-relevant redox protein complex between yeast ferricytochrome c and yeast ferricytochrome c peroxidase. A 1:1 binding stoichiometry was observed, and the binding free energies agree with results from other techniques. The binding is either enthalpy- or entropy-driven depending on the conditions, and the heat capacity change upon binding is negative. Increasing the ionic strength destabilizes the complex, and both the binding enthalpy and entropy increase. Increasing the temperature stabilizes the complex, indicating a positive van't Hoff binding enthalpy, yet the calorimetric binding enthalpy is negative (-1.4 to -6.2 kcal mol(-)(1)). We suggest that this discrepancy is caused by solvent reorganization in an intermediate state. The measured enthalpy and heat capacity changes are in reasonable agreement with the values estimated from the surface area change upon complex formation. These results are compared to those for formation of the horse ferricytochrome c/yeast ferricytochrome c peroxidase complex. The results suggest that the crystal and solution structures for the yeast complex are the same, while the crystal and solution structures for horse cytochrome c/yeast cytochrome c peroxidase are different.  相似文献   

4.
Complex formation between cytochrome c peroxidase and ferricytochrome c perturbs the optical absorption spectrum in the Soret band by about 2%. This perturbation can be utilized as a measure of the complex formed in solution and permits the determination of the stoichiometry and the equilibrium association constant for this reaction. At pH 6, in cacodylate/KNO3 buffers, only a 1:1 complex between cytochrome c peroxidase and ferricytochrome c is detected. The equilibrium association constant for the complex has been determined as a function of ionic strength and varies between (6.0 +/- 3.6) x 10(6) M-1 and (2.2 +/- 1.9) x 10(6) M-1 over the ionic strength range 0.01 M to 0.20 M.  相似文献   

5.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

6.
Proton NMR spectroscopy at 500 and 361 MHz has been used to characterize the noncovalent or electrostatic complexes of yeast cytochrome c peroxidase (CcP) with horse, tuna, yeast isozyme-1, and yeast isozyme-2 ferricytochromes c and the covalently cross-linked complexes of cytochrome c peroxidase with horse and yeast isozyme-1 ferricytochromes c. Under the conditions employed in this work, the stoichiometry of the predominant complex formed in solution (which totaled greater than 90% of complex formed) was found to be 1:1 in all cases. These studies have elucidated significant differences in the proton NMR absorption spectra and the one-dimensional nuclear Overhauser effect difference spectra of the complexes, depending on the specific species of ferricytochrome c incorporated. In particular, the results indicate that the noncovalent complexes formed between CcP and physiological redox partners (yeast isozyme-1 or yeast isozyme-2 ferricytochromes c) are distinctly different from the noncovalent complexes formed between CcP and ferricytochromes c from horse and tuna. Parallel chemical cross-linking studies carried out using mixtures of cytochrome c peroxidase with horse ferricytochrome c, and cytochrome c peroxidase with yeast isozyme-1 ferricytochrome c further emphasize such cytochrome c-dependent differences, with only the covalently cross-linked complex of physiological redox partners (cytochrome c peroxidase/yeast isozyme-1) displaying NMR spectra characteristic of a heterogeneous mixture of different 1:1 complexes. Finally, one-dimensional nuclear Overhauser effect experiments have proven valuable in selectively and efficiently probing the protein-protein interface in these complexes, including the environment around the cytochrome c heme 3-methyl group and Phe-82.  相似文献   

7.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

8.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

9.
G C Kresheck  J E Erman 《Biochemistry》1988,27(7):2490-2496
Two endotherms are observed by differential scanning calorimetry during the thermal denaturation of cytochrome c peroxidase at pH 7.0. The transition midpoint temperatures (tm) were 43.9 +/- 1.4 and 63.3 +/- 1.6 degrees C, independent of concentration. The two endotherms were observed at all pH values between 4 and 8, with the transition temperatures varying with pH. Precipitation was observed between pH 4 and 6, and only qualitative data are presented for this region. The thermal unfolding of cytochrome c peroxidase was sensitive to the presence and ligation state of the heme. Only a single endotherm was observed for the unfolding of the apoprotein, and this transition was similar to the high-temperature transition in the holoenzyme. Addition of KCN to the holoenzyme increases the midpoint of the high-temperature transition whereas the low-temperature transition was increased upon addition of KF. Binding of the natural substrate ferricytochrome c to the enzyme increases the low-temperature transition by 4.8 +/- 1.3 degrees C but has no effect on the high-temperature transition at pH 7. The presence of cytochrome c peroxidase decreases the stability of cytochrome c, and both proteins appear to unfold simultaneously. The results are discussed in terms of the two domains evident in the X-ray crystallographic structure of cytochrome c peroxidase.  相似文献   

10.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

11.
The oxidation of ferrocytochrome c mediated by cytochrome c oxidase was investigated in the presence of ferricytochrome c, trifluoroacetyl-cytochrome c, the heme fragments Hse65-[1-65] and Hse80-[1-80] and their respective porphyrin derivatives, as well as carboxymethylated apoprotein and related fragments, polycations, salts and neutral additives. The inhibition of the redox reaction by salts and neutral molecules, even if in theoretical agreement with their effect on electrostatic interactions, may alternatively be interpreted in terms of hydrophobicity. The latter can account for the inhibitory properties of trifluoroacetylated ferricytochrome c, similar to those of ferricytochrome c. On the assumption that the inhibitory properties of some of the investigated derivatives monitor their binding affinities to the cytochrome c oxidase at the cytochrome c binding sites, the experimental results do not confirm a primarily electrostatic character for the cytochrome c/cytochrome c oxidase association process. Strong indication was found that the cytochrome c C-terminal sequence is critically involved in the complex formation. Conformational studies by circular dichroism measurements and IR spectroscopy in solution and in solid state respectively, show that some of the derivatives examined may possibly acqkuire in the binding process to the oxidase, as secondary structure similar to that present in the native cytochrome c.  相似文献   

12.
The relationship between the structure and function of ferricytochrome c bound to the phosphoprotein phosvitin was investigated. The rates of reduction of phosvitin-bound ferricytochrome c by cytochrome b2, ascorbate and the superoxide radical generated by xanthine oxidase wer repressed where the binding ratio was less than half the maximum, but at higher ratios they were restored gradually with increase in the ratio. The affinity of cytochrome b2 for cytochrome c was not affected by binding of cytochrome c to phosvitin. The redox potential of the bond form was lower than that of the free form and only decreased with decrease in the ratio. The conformatin around the heme moiety and the electronic structure of the heme group of bound ferricytochrome c were similar to those of free ferricytochrome c, but the conformational stability in the vicinity of the prosthetic group was related to the binding ratio as ratios above half the maximum and was well correlated with the reduction rate. Since the binding of cytochrome c to phosvitin is much stronger at binding ratios below half the maximum, these results suggest that this binding strength exclusively affects the conformational flexibility of the heme crevice in the cytochrome molecule, thus altering the reduction rate.  相似文献   

13.
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150,000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30,000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 +/- 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

14.
Proteins are designed to function under crowded conditions where the solute concentration can reach 400 g/L, but they are almost always studied in dilute solutions. To address this discrepancy, we have undertaken a series of studies to determine the effects of high solute concentrations on the thermodynamics of protein equilibria. Recently, we used isothermal titration calorimetry (ITC) to show that high concentrations of mono-, di-, and tetrasaccharides have a small stabilizing effect on the crystallographically defined cytochrome c binding site on yeast ferricytochrome c peroxidase [Morar, A. S., Wang, X., and Pielak, G. J. (2001) Biochemistry 40, 281-285]. Here, we use this technique to show that trisaccharides increase the apparent thermodynamic binding constants for both cytochrome c binding sites on the peroxidase. Mutagenesis studies confirm that the second site includes Asp 148 on the peroxidase. Binding of both cytochrome c molecules is exothermic. The data are interpreted by assuming either the presence or absence of intersite interactions.  相似文献   

15.
The preparation and properties of a partially succinoylated cytochrome c, suited for the detection of superoxide anion radicals in liver microsomes, is reported. By succinoylation of 45% of the primary amino groups of horse heart cytochrome c the activity towards solubilized NADPH--cytochrome P-450 reductase was diminished by 99% compared with native cytochrome c. The capacities of cytochrome b5 and cytochrome c oxidase to reduce the succinoylated ferricytochrome c and oxidize succinoylated ferrocytochrome c respectively were decreased to a similar extent. However, the bimolecular rate constant for the reduction of the partially succinoylated ferricytochrome c by O2-. was estimated to be one-tenth of the value for the reaction of O2-. with native ferricytochrome c a pH 7.7. On this basis the quantification of O2-. generated by NADPH-supplemented liver microsomes became possible. The initial rates of succinoylated ferricytochrome c reduction determined at various finite concentrations of the cytochrome c derivative can be extrapolated to obtain true rates of O2-. generation in a homogeneous system. The problems encountered in the quantitative determination of O2-. produced in biological membranes, e.g. microsomes, are discussed.  相似文献   

16.
In aerobic reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium, O2- production is mediated by the tetrazolium, not the phenazine. Thus, superoxide dismutase inhibited reduction of the tetrazolium, but when ferricytochrome c was substituted for the tetrazolium its reduction was not affected by this enzyme. Furthermore, NADH plus the phenazine did not accelerate the oxidation of epinephrine to adrenochrome unless the tetrazolium was present, and under those circumstances superoxide dismutase did inhibit adrenochrome formation. When the tetrazolium and ferricytochrome c were present simultaneously, addition of superoxide dismutase was seen to accelerate the reduction of the cytochrome. This is explainable by the reduction of O2- by the reduced phenazine, which thus competes with cytochrome c for the available O2-. When the O2- was eliminated by superoxide dismutase, more of the reduced phenazine was available for the direct reduction of cytochrome c.  相似文献   

17.
Diederix RE  Ubbink M  Canters GW 《Biochemistry》2002,41(43):13067-13077
The peroxidase activity of c-type cytochromes increases substantially by unfolding. This phenomenon was used to study the equilibrium unfolding of ferricytochrome c. The peroxidase activity is already enhanced at low denaturant concentrations. The lowest free energy folding intermediate is easily detected by this method, while it is invisible using fluorescence or optical spectroscopy. The free energy difference between this folding intermediate and the native state depends on the strength of the sixth ligand of the heme-iron and the increase in peroxidase activity upon unfolding is shown to be a sensitive indicator of the strength of this ligand. Under fully denaturing conditions, the peroxidase activity is inhibited by protein-based ligands. It is shown that at least three different ligand groups can be responsible for this inhibition, and that at neutral or alkaline pH, the predominant ligand is not histidine. The use of peroxidase activity assays as a method to study the unfolding of cytochrome c is evaluated.  相似文献   

18.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

19.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t 1/2 3-5 microseconds). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (102 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske Center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center. UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of HII(+); these may reflect additional sites of action of the inhibitor.  相似文献   

20.
  • 1.1. The results of chemically crosslinking yeast cytochrome c peroxidase with both horse and yeast iso-1 ferricytochromes c have been studied by a combination of gel electrophoresis and proton NMR spectroscopy.
  • 2.2. The complexes were formed at a variety of potassium phosphate concentrations ranging from 10 to 300 mM using the water soluble crosslinking agent, EDC (l-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide).
  • 3.3. The primary crosslinking product in both cases is the 1:1 covalent complex, but, for each pair of partner proteins the yield of the 1:1 crosslinked complex varies with the salt concentration.
  • 4.4. Furthermore, at low salt concentrations the yield of the 1:1 covalent complex involving horse cytochrome c is much larger than the yield of the 1:1 covalent complex formed with yeast iso-1 cytochrome c, whereas at high salt concentrations the situation is reversed.
  • 5.5. Proton NMR spectroscopy, in combination with gel electrophoresis, provides evidence for the formation of different types of 1:1 complexes for the peroxidase/yeast cytochrome c pair and has been used to study the effect of changes in the solution ionic strength upon both the peroxidases/horse cytochrome c and the peroxidase/yeast cytochrome c complexes.
  • 6.6. This work indicates that electrostatic interactions between proteins play a dominant role in formation of complexes between cytochrome c peroxidase and horse ferricytochrome c, whereas the hydrophobic effect plays a comparatively larger role in stabilizing complexes between cytochrome c peroxidase and yeast iso-1 ferricytochrome c.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号