共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins are designed to function under crowded conditions where the solute concentration can reach 400 g/L, but they are almost always studied in dilute solutions. To address this discrepancy, we have undertaken a series of studies to determine the effects of high solute concentrations on the thermodynamics of protein equilibria. Recently, we used isothermal titration calorimetry (ITC) to show that high concentrations of mono-, di-, and tetrasaccharides have a small stabilizing effect on the crystallographically defined cytochrome c binding site on yeast ferricytochrome c peroxidase [Morar, A. S., Wang, X., and Pielak, G. J. (2001) Biochemistry 40, 281-285]. Here, we use this technique to show that trisaccharides increase the apparent thermodynamic binding constants for both cytochrome c binding sites on the peroxidase. Mutagenesis studies confirm that the second site includes Asp 148 on the peroxidase. Binding of both cytochrome c molecules is exothermic. The data are interpreted by assuming either the presence or absence of intersite interactions. 相似文献
2.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover. 相似文献
3.
An interaction between rat liver glucocorticoid--receptor complex and immobilized ATP was identified. Rat liver cytosol preparations were incubated with [3H]triamcinolone acetonide for 4 h at 4 degrees C and partially purified by precipitation with (NH4)2SO4 before use. The resulting glucocorticoid--receptor complex could be selectively adsorbed on to columns of ATP--Sepharose. The freshly prepared cytosol [3H]triamcinolone acetonide--receptor complex had very little affinity for binding to the ATP--Sepharose column, but acquired this ability on temperature- or salt-activation. The presence of 10 mM-sodium molybdate during this salt- or temperature-dependent activation blocked the binding of the receptor complex to ATP--Sepharose. The interaction is reversible, since it can be disrupted by high-salt conditions. A competitive binding assay, using free nucleotides in samples to be chromatographed, revealed a preferential interaction between ATP and the glucocorticoid--receptor complex. Buffer containing ATP was also used to elute the glucocorticoid--receptor complex from ATP--Sepharose columns successfully. When ATP was added to the preparations containing [3H]triamcinolone acetonide--receptor complexes, the steroid specificity or sedimentation properties of the complex remained unaltered. Our results demonstrate an interaction between rat liver glucocorticoid--receptor complex and immobilized ATP and suggest a role of this nucleotide in receptor function. 相似文献
4.
Crystalline cytochrome c peroxidase and complex ES 总被引:3,自引:0,他引:3
5.
Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy 总被引:1,自引:0,他引:1
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
E Stellwagen 《Biochemistry》1968,7(7):2496-2501
7.
The binding of ferricytochrome c to liposomes consisting of phosphatidylcholine mixtures with cardiolipin (3:1) or phosphatidylserine (3:1) has been investigated. Experimental data have been analyzed in terms of two-dimensional models of large ligand adsorption. The equilibrium parameters of ferricytochrome c interaction with a phospholipid bilayer are determined. 相似文献
8.
9.
S. Hirota H. Okumura S. Kuroiwa N. Funasaki Y. Watanabe 《Journal of biological inorganic chemistry》2005,10(4):355-363
Cytochrome c (cyt c) was reduced by a tyrosine-containing peptide, tyrosyltyrosylphenylalanine (TyrTyrPhe), at pH 6.0–8.0, while tyrosinol or tyrosyltyrosine (TyrTyr) could not reduce cyt c effectively under the same condition. Cyt c was reduced at high peptide concentration, whereas the reaction did not occur effectively at low concentration. The reaction rate varied with time owing to a decrease in the TyrTyrPhe concentration and the production of tyrosine derivatives during the reaction. The initial rate constants were 2.4×10–4 and 8.1×10–4 s–1 at pH 7.0 and 8.0, respectively, for the reaction with 1.0 mM TyrTyrPhe in 10 mM phosphate buffer at 15°C. The reciprocal initial rate constant (1/kint) increased linearly against the reciprocal peptide concentration and against the linear proton concentration, whereas logkint decreased linearly against the root of the ionic strength. These results show that deprotonated (TyrTyrPhe)–, presumably deprotonated at a tyrosine site, reduces cyt c by formation of an electrostatic complex. No significant difference in the reaction rate was observed between the reaction under nitrogen and oxygen atmospheres. From the matrix-assisted laser desorption ionization time-of-flight mass spectra of the reaction products, formation of a quinone and other tyrosine derivatives of the peptide was supported. These products should have been produced from a tyrosyl radical. We interpret the results that a cyt cox/(TyrTyrPhe)–cyt cred/(TyrTyrPhe) equilibrium is formed, which is usually shifted to the left. This equilibrium may shift to the right by reaction of the produced tyrosyl radical with the tyrosine sites of unreacted TyrTyrPhe peptides. 相似文献
10.
E Mochan 《Biochimica et biophysica acta》1970,216(1):80-95
11.
A hypothetical model of the cytochrome c peroxidase . cytochrome c electron transfer complex 总被引:11,自引:0,他引:11
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer. 相似文献
12.
13.
14.
15.
Proton resonance assignments of horse ferricytochrome c 总被引:7,自引:0,他引:7
Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) was used to obtain extensive resonance assignments in the 1H NMR spectrum of horse ferricytochrome c. Assignments were made for the main-chain and C beta protons of 102 residues (all except Pro-44 and Gly-84) and the majority of side-chain protons. As starting points for the assignment of the oxidized protein, a limited set of protons was initially assigned by use of 2D NMR magnetization transfer methods to correlate resonances in the oxidized form with assigned resonances in the reduced form [Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H., & Englander, S. W. (1989) Biochemistry (preceding paper in this issue)]. Given the complexity of the spectrum due to the size of this protein (104 residues) and its paramagnetic center, the initial search for side-chain spin systems in J-correlated spectra was successful only for the simplest side chains, but the majority of NH-C alpha H-C beta H subspin systems (NAB sets) could be identified at this stage. The subsequent search for sequential NOE connectivities focused on NAB sets, with use of previously assigned residues to place NOE-connected segments within the amino acid sequence. Selective proton labeling of either the slowly or the rapidly exchanging amide sites was used to simplify the spectra, and systematic work at two temperatures was used to resolve ambiguities in the 2D NMR spectra. These approaches, together with the use of magnetization transfer methods to correlate reduced and oxidized cytochrome c spectra, provide multiple cross-checks to verify assignments. 相似文献
16.
Complex formation between cytochrome c peroxidase and ferricytochrome c perturbs the optical absorption spectrum in the Soret band by about 2%. This perturbation can be utilized as a measure of the complex formed in solution and permits the determination of the stoichiometry and the equilibrium association constant for this reaction. At pH 6, in cacodylate/KNO3 buffers, only a 1:1 complex between cytochrome c peroxidase and ferricytochrome c is detected. The equilibrium association constant for the complex has been determined as a function of ionic strength and varies between (6.0 +/- 3.6) x 10(6) M-1 and (2.2 +/- 1.9) x 10(6) M-1 over the ionic strength range 0.01 M to 0.20 M. 相似文献
17.
NMR study of the alkaline isomerization of ferricytochrome c 总被引:1,自引:0,他引:1
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively. 相似文献
18.
Individual assignments of the 1H n.m.r. lines of heme c in reduced and oxidized cytochrome c-551 from were obtained by nuclear Overhauser enhancement and saturation transfer experiments. Comparison with the corresponding data on horse heart cytochrome c showed that the locations of high spin density on the heme c periphery as well as the in-plane principal axes x and y of the electronic g-tensor are rotated by approximately 90° in ferricytochrome c-551 relative to horse ferricytochrome c. High spin density in ferricytochrome c-551 is thus localized on the pyrrole ring III. While this pyrrole ring is well shielded in the interior of mammalian-type cytochromes c, it is more easily accessible in cytochrome c-551. It is suggested that this evolutionary change of the heme c electronic structure would be compatible with the hypothesis that the electron transfer in both species is via solvent exposed peripheral ring carbon atoms. 相似文献
19.
Cytochrome c peroxidase (CcP) can bind as many as two cytochrome c (Cc) molecules in an electrostatic complex. The location of the two binding domains on CcP has been probed by photoinduced interprotein electron transfer (ET) between zinc-substituted horse cytochrome c (ZnCc) and CcP with surface charge-reversal mutations and by isothermal titration calorimetry (ITC). These results, which are the first experimental evidence for the location of domain 2, indicate that the weak-binding domain includes residues 146-150 on CcP. CcP(E290K) has a charge-reversal mutation in the tight-binding domain, which should weaken binding, and it weakens the 1:1 complex; K(1) decreases 20-fold at 18 mM ionic strength. We have employed two mutations to probe the proposed location for the weak-binding domain on the CcP surface: (i) D148K, a "detrimental" mutation with a net (+2) change in the charge of CcP, and (ii) K149E, a "beneficial" mutation with a net (-2) change in the charge. The interactions between FeCc and CcP(WT and K149E) also have been studied with ITC. The CcP(D148K) mutation causes no substantial change in the 2:1 binding but an increase in the reactivity of the 2:1 complex. The latter can be interpreted as a long-range influence on the heme environment or, more likely, the enhancement of a minority subset of binding conformations with favorable pathways for ET. CcP(K149E) has a charge-reversal mutation in the weak-binding domain that produces a substantial increase in the 2:1 binding constant as measured by both quenching and ITC. For the 1:1 complex of CcP(WT), DeltaG(1) = -8.2 kcal/mol (K(1) = 1.3 x 10(6) M(-)(1)), DeltaH(1) = +2.7 kcal/mol, and DeltaS(1) = +37 cal/K.mol at 293 K; for the second binding stage, K(2) < 5 x 10(3) M(-)(1), but accurate thermodynamic parameters were not obtained. For the 1:1 complex of CcP(K149E), DeltaG(1) = -8.5 kcal/mol (K(1) = 2 x 10(6) M(-)(1)), DeltaH(1) = +2. 0 kcal/mol, and DeltaS(1) = +36 cal/K.mol; for the second stage, DeltaG(2) = -5.5 kcal/mol (K(1) = 1.3 x 10(4) M(-)(1)), DeltaH(2) = +2.9 kcal/mol, and DeltaS(2) = +29 cal/K.mol. 相似文献
20.
Reversible acidic-alkaline transition of the carbon monoxide complex of cytochrome c peroxidase 总被引:1,自引:0,他引:1
The Soret absorption band of the ferrous carbon monoxide (CO) complex of cytochrome c peroxidase exhibited a blue shift from 423.7 to 420 nm upon an increase in pH from 6.5 to 8.5. The spectral change was reversible with an isosbestic point at 422 nm. The pH dependence of this spectral change gave a sigmoidal curve fitted well to a theoretical curve of a cooperative release of two protons with a pK value of 7.5, indicating the existence of the acidic and alkaline forms of the ferrous CO enzyme. Upon irradiation of light flash (100 J of power and 30-microseconds), the heme-bound CO was readily dissociated in both acidic and alkaline forms with a quantum yield of approximately unity. On the other hand, the rate of recombination of the dissociated CO with the heme iron was significantly different between these two forms; the recombination rate constants were 1.1 X 10(3) and 3.0 X 10(4) M-1 S-1 at 25 degrees C for the acidic and alkaline forms, respectively. At intermediate pH values, kinetics of recombination were biphasic, consisting of the slow and fast processes with the appropriate rate constants mentioned above. When the fraction of the fast process was plotted against pH, the pH profile coincided with the spectrophotometric pH titration curve described above. Thus, it was concluded that the acidic and alkaline forms of the enzyme were responsible for the slow and fast processes, respectively. In infrared spectroscopy, the acidic form showed a narrow CO stretching band at 1922 cm-1 with a half-band width of 12.5 cm-1, while the alkaline form exhibited a broad CO-stretching band at 1948 cm-1 with a half-band width of 33 cm-1. Significance of these results are discussed in relation to the structure of the heme vicinity on the CO complex of cytochrome c peroxidase. 相似文献