首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apical hook opening and cotyledon unfolding are characteristic responses that occur during deetiolation of dicotyledonous seedlings. Light-stimulated apical hook opening and cotyledon unfolding in etiolated Arabidopsis thaliana seedlings appears to involve the activities of multiple photosensory systems. Red, far-red, and blue light are all effective in stimulating these responses in Arabidopsis. Stimulation of hook opening by red light and low fluence blue light is inductive, far-red reversible, and exhibits reciprocity, as is characteristic of many low fluence-dependent phytochrome-mediated responses. Far-red and high-fluence blue light appear to stimulate hook opening and cotyledon unfolding through high-irradiance-response systems during long-term light treatments. Although a phytochrome high-irradiance-response system presumably mediates the responses in far-red light, the responses to high-fluence blue light may be mediated by a blue light-specific photosensory system.  相似文献   

2.
3.
The function of phytochrome A   总被引:4,自引:1,他引:3  
Knowledge of the photoperceptive function of phytochrome A has improved substantially thanks to the availability of mutants lacking phytochrome A and transgenic plants transformed with the PHYA gene in sense or anti-sense orientation. In imbibed seeds, phytochrome A mediates very-low-fluence responses. In etiolated seedlings, phytochrome A mediates very-low-fluence responses, high-irradiance responses under continuous far-red light, responsivity amplification to phytochrome B and red-light enhancement of the phototropic response to blue light. In light-grown seedings, phytochrome A modulates the extent of response to reductions in red/far-red ratio perceived by phytochrome B, perceives daylength extensions and night interruptions affecting flowering, and perceives light treatments resetting endogenous rhythms. Under natural radiation these abilities are manifested during seed germination and seedling de-etiolation under dense canopies or extremely low light fluences, and during early neighbour detection, but other processes await experimental evaluation. Phytochrome A affects growth and development throughout the whole life cycle of angiosperms.  相似文献   

4.
Dual effect of phytochrome A on hypocotyl growth under continuous red light   总被引:5,自引:1,他引:4  
The role of phytochrome A in the control of hypocotyl growth under continuous red light (Rc) was investigated using phyA and phyB mutants of Arabidopsis thaliana, which lack phytochrome A (phyA) or phytochrome B (phyB), respectively, and transgenic seedlings of Nicotiana tabacum overexpressing Avena phyA, compared to the corresponding wild type (WT). In WT seedlings of A. thaliana, hypocotyl growth inhibition showed a biphasic response to the fluence rate of Rc, with a brake at 10?2μmol m?2 s?1. At equal total fluence rate, hourly pulses of red light caused slightly more inhibition than Rc. The response to very low fluences of continuous or pulsed red light was absent in the phyA and phyA phyB mutants and present in the phyB mutant. The second part of the response was steeper in the phyA mutant than in the WT but was absent in the phyB mutant. In WT tobacco the response to Rc was biphasic. Overexpression of Avena phyA enhanced the response only at very low fluence rates of Rc (< 10?2μmol m?2 s?1). In both species, the effect of hourly pulses of far-red light was similar to the maximum inhibition observed in the first phase of the response to Rc. Using reciprocity failure (i.e. higher inhibition under continuous than pulsed light) as the operational criterion, a ‘true’ high-irradiance reaction occurred under continuous far-red light but not under Rc or red plus far-red light mixtures. Native and overexpressed phyA are proposed to mediate very low fluence responses under Rc. In WT A. thaliana, this effect is counteracted by a negative action of phyA on phyB-mediated low-fluence responses.  相似文献   

5.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

6.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

7.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

8.
9.
The lz-2 mutation in tomato ( Lycopersicon esculentum ) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri 1 and tri 1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.  相似文献   

10.
Arabidopsis thaliana lacking phytochrome A, phytochrome B or both (double mutant) were analyzed by comparing their photoresponse with that of the wild type. Results indicate that root hair formation in Arabidopsis was strongly stimulated by light irradiation. Both phytochrome A and phytochrome B are responsible for photoinduction by continuous red light irradiation, while only phytochrome A mediates the response under continuous far-red light. The fluence response relationships to a red light pulse in the wild type displayed a biphasic trend similar to that previously observed in lettuce seedlings, with the first phase showing a sharp maximum at 78.3 Jm−2, and the second one operating over a wider fluence range (3,100–9,400 Jm−2) two orders of magnitude higher than the first one. Analysis of the fluence response curves for red light induction in the phytochrome mutants revealed that phytochrome A is responsible for the first phase in the wild type, while the second is the result of the combined action of both phytochrome A and phytochrome B. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

11.
Phytochrome and a blue light receptor mediate a developmental switch from etiolated growth to the photosynthetically competent 'de-etiolated' program. The analysis of Arabidopsis mutants deficient in photomorphogenetic responses (e.g. hy, blu) has identified several elements that mediate the red/far-red and blue light responses. Mutants that appear de-etiolated in the absence of light (e.g. det1, det2, cop1) implicate negatively-acting elements that integrate red and blue light signals. Phenocopy of the de-etiolated mutants by cytokinin implicates a role for this hormone in promoting seedling photomorphogenesis. Epistasis analyses support a pathway in which DET1 and DET2 are downstream effectors of phytochrome function.  相似文献   

12.
We have selected two recessive mutants of tomato with slightly longer hypocotyls than the wild type, one under low fluence rate (3 mol/m2/s) red light (R) and the other under low fluence rate blue light. These two mutants were shown to be allelic and further analysis revealed that hypocotyl growth was totally insensitive to far-red light (FR). We propose the gene symbol fri (far-red light insensitive) for this locus and have mapped it on chromosome 10. Immunochemically detectable phytochrome A polypeptide is essentially absent in the fri mutants as is the bulk spectrophotometrically detectable labile phytochrome pool in etiolated seedlings. A phytochrome B-like polypeptide is present in normal amounts and a small stable phytochrome pool can be readily detected by spectrophotometry in the fri mutants. Inhibition of hypocotyl growth by a R pulse given every 4 h is quantitatively similar in the fri mutants and wild type and the effect is to a large extent reversible if R pulses are followed immediately by a FR pulse. After 7 days in darkness, both fri mutants and the wild type become green on transfer to white light, but after 7 days in FR, the wild-type seedlings that have expanded their cotyledons lose their capacity to green in white light, while the fri mutants de-etiolate. Adult plants of the fri mutants show retarded growth and are prone to wilting, but exhibit a normal elongation response to FR given at the end of the daily photoperiod. The inhibition of seed germination by continuous FR exhibited by the wild type is normal in the fri mutants. It is proposed that these fri mutants are putative phytochrome A mutants which have normal pools of other phytochromes.  相似文献   

13.
Seed germination is often induced by a pulse of red light perceived by phytochrome and cancelled by a subsequent pulse of far-red light. When the pulse of red light is followed by several hours of darkness, a pulse of far-red light is no longer effective and prolonged far-red is necessary to block germination. The aim was to investigate whether the red light pulse and prolonged far-red light act on the same or different processes during germination of Datura ferox seeds. Forty-five hours after the inductive red light pulse, germination could not be blocked by one pulse or six hourly pulses of far-red light, but was significantly reduced by 6 h of continuous far-red light. The pulse of red light increased embryo growth potential and the activities of beta-mannanase and beta-mannosidase extracted from the micropylar region of the endosperm. Continuous far-red light had no effect on embryo growth potential or beta-mannosidase activity, but severely reduced the activity of beta-mannanase. The effect of far-red light had the features of a high-irradiance response of phytochrome. Both germination and beta-mannanase activity were restored by a pulse of red light given after the end of the continuous far-red treatment. It is concluded that the low-fluence response and the high-irradiance response modes of phytochrome have antagonistic effects on seed germination and that the control of beta-mannanase activity is one process where this antagonism is established.  相似文献   

14.
The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.Abbreviations HIR: High irradiance response - LFR: Low fluence response - Pfr: Far-red absorbing form of phytochrome - phyA: Phytochrome A - phyB1: Phytochrome B1 - phyB2: Phytochrome B2 - phyA(B1, B2): Phytochrome mutant deficient in phyA (B1, B2) - phyAphyB1(B1B2,AB2): Double phytochrome mutant deficient in phyA and phyB1(B1, B2) - phyAphyB1phyB2: Triple mutant deficient in phyA, phyB1 and phyB2 - VLFR: Very low fluence response - WT: Wild-type tomato Communicated by R. Reski  相似文献   

15.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   

16.
Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Ethylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana . We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 μl l−1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.  相似文献   

17.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

18.
Plant photoreceptors detect light cues and initiate responses ranging from chloroplast differentiation to the control of morphogenesis and flowering. The photocontrol of photosynthesis-related nuclear genes appears closely related to retrograde plastid signals by which the status of the organelle controls the expression of nuclear genes. However, what specific role, if any, plastid-originated signals play in light responses is poorly understood: it has in the past been proposed that plastid signals play a role in all responses to high fluence far-red light perceived by the light-labile phytochrome A, irrespective of whether they involve photosynthesis-related genes. To explore this further, we have re-examined the phenotype of three cue (cab-underexpressed) Arabidopsis mutants, defective in chloroplast development. The mutants have underdeveloped etioplasts, with increasing impairments in cue6, cue8 and cue3. The mutants show only small defects in photocontrol of hypocotyl elongation and cotyledon opening under prolonged far-red or red light, and normal photocontrol under blue. On the other hand, the expression of photosynthesis-associated nuclear genes is much more impaired in the mutants in the dark and following red or far-red light short treatments or continuous light, than that of those phytochrome-dependent genes tested which are not associated with photosynthesis. Furthermore, red/far-red photoreversible responses involving photosynthesis-related genes (induction of Lhcb1cab promoter activity, and photoreversible extent of greening) mediated by phytochrome B and other photo-stable phytochromes, both show a reduction in the cue mutants, which correlates with the etioplast defect. Our evidence demonstrates that plastid-derived signals need to be operational in order for the phytochrome control of photosynthetic nuclear genes to occur.  相似文献   

19.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   

20.
Overexpression of phytochrome A results in an increased inhibition of hypocotyl elongation under red and far-red light. We used this approach to assay for the function of N-terminal mutations of rice (Oryza sativa L.) phytochrome A. Transgenic tobacco seedlings that express the wild-type rice phytochrome A (RW), a rice phytochrome A lacking the first 80 amino acids (NTD) or a rice phytochrome A with a conversion of the first 10 serines into alanine residues (S/A) were compared with untransformed wild-type tobacco (Nicotiana tabacum L. cv. Xanthi) seedlings. Experiments under different fluence rates showed that RW and, even more strongly, S/A increased the response under both red and far-red light, whereas NTD decreased the response under far-red light but hardly altered the response under red light. These results indicate that NTD not only lacks residues essential for an increased response under red light but also distorts the wild-type response under far-red light. Wild-type rice phytochrome A and, even more so, S/A mediate an enhanced phytochrome A as well as phytochrome B function, whereas NTD interferes with the function of endogenous tobacco phytochrome A as well as that of rice phytochrome A when co-expressed in a single host. Experiments with seedlings of different ages and various times of irradiation under far-red light demonstrated that the effect of NTD is dependent on the stage of development. Our results suggest that the lack of the first 80 amino acids still allows a rice phytochrome A to interact with the phytochrome transduction pathway, albeit nonproductively in tobacco seedlings.Abbreviations HIR high-irradiance response - NTD N-terminal deletion mutant of rice phytochrome A - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - RW rice wild-type phytochrome A - S/A serine-to-alanine mu-tant of rice phytochrome A - wNTD weakly expressing NTD line - XAN wild-type tobacco cv. Xanthi We thank Masaki Furuya (Adv. Research Laboratory, Hitachi, Saitama, Japan) and Akira Nagatani (RIKEN Institute, Saitama, Japan) for providing the monoclonal antibodies mAP5 and mAR14. The work was supported by a grant from the Human Frontier Science Program. K.E. was a recipient of a Landesgraduiertenförderung fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号