首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Gene ilvG in Escherichia coli K-12 and ilvl in ' Salmonella typhimurium LT2' ( S. enterica serotype Typhimurium, strain LT2) are inactive due to frameshift or nonsense mutations, respectively. These inactive genes have been suggested to be part of 'cryptic' genetic systems which are defined as being of long-term regulatory and evolutionary significance. We have shown that the nonsense mutation in ilvI is present only in derivatives of the laboratory strain ' S. typhimurium LT2'. All natural isolates of Salmonella examined have an arginine codon at the corresponding location of their ilvl sequences. Further, two randomly selected natural isolates of serotype Typhimurium are shown to each have an active ALS III isozyme. Our findings strongly suggest that the only Salmonella strains which lack a functional ilvHI locus are LT2 isolates. We suggest that the mutations leading to inactivation of both ilvI in ' S. typhimurium LT2' and ilvG in E. coli K-12 are more likely to have been acquired during laboratory storage and/or cultivation, rather than representing cryptic systems of gene regulation.  相似文献   

2.
The colanic acid gene cluster of Salmonella enterica LT2 was sequenced and compared with that of Escherichia coli K-12. The two clusters are similar with divergence slightly higher than average for genes of the two species. The cluster was divided into four blocks by GC content and seems likely to have transferred from a higher GC content species to the ancestor of E. coli and S. enterica. All 19 genes of K-12 and 13 genes of LT2 appear to have undergone random genetic drift with amelioration of the GC content. However, in the case of S. enterica, we believe that the six genes of the GDP-fucose pathway group were replaced relatively recently by genes closely related to those of the original donor species. Two repetitive elements were observed: a bacterial interspersed mosaic element in the intergenic region between wzx and wcaK in K-12 only and a RSA (repetitive sequence element) sequence between wcaJ and wzx in LT2 only.  相似文献   

3.
Tedin K  Norel F 《Journal of bacteriology》2001,183(21):6184-6196
The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium DeltarelA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II (ilvGM) and III (ilvIH) isozymes, respectively, DeltarelA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the DeltarelA strains. In the E. coli K-12 MG1655 DeltarelA background, correction of the preexisting rph-1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 DeltarelA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 DeltarelA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA-dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.  相似文献   

4.
We screened Salmonella typhimurium, Citrobacter freundii, Klebsiella pneumoniae, Shigella boydii, and many isolates of Escherichia coli for DNA sequences homologous to those encoding each of two unrelated type I restriction and modification systems (EcoK and EcoA). Both K- and A-related hsd genes were identified, but never both in the same strain. S. typhimurium encodes three restriction and modification systems, but its DNA hybridized only to the K-specific probe which we know to identify the StySB system. No homology to either probe was detected in the majority of E. coli strains, but in C. freundii, we identified homology to the A-specific probe. We cloned this region of the C. freundii genome and showed that it encoded a functional, A-related restriction system whose specificity differs from those of known type I enzymes. Sequences immediately flanking the hsd K genes of E. coli K-12 and the hsd A genes of E. coli 15T- were shown to be homologous, indicating similar or even identical positions in their respective chromosomes. E. coli C has no known restriction system, and the organization of its chromosome is consistent with deletion of the three hsd genes and their neighbor, mcrB.  相似文献   

5.
IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.  相似文献   

6.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

7.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

8.
The nucleotide sequence of a 1.4-kilobase-pair fragment containing the Salmonella typhimurium LT2 glgC gene coding for ADPglucose synthetase was determined. The glgC structural gene contains 1,293 base pairs, having a coding capacity of 431 amino acids. The amino acid sequence deduced from the nucleotide sequence shows that the molecular weight of ADPglucose synthetase is 45,580. Previous results of the total amino acid composition analysis and amino acid sequencing (M. Lehmann and J. Preiss, J. Bacteriol. 143:120-127, 1980) of the first 27 amino acids from the N terminus agree with that deduced from nucleotide sequencing data. Comparison of the Escherichia coli K-12 and S. typhimurium LT2 ADPglucose synthetase shows that there is 80% homology in their nucleotide sequence and 90% homology in their deduced amino acid sequence. Moreover, the amino acid residues of the putative allosteric sites for the physiological activator fructose bisphosphate (amino acid residue 39) and inhibitor AMP (amino acid residue 114) are identical between the two enzymes. There is also extensive homology in the putative ADPglucose binding site. In both E. coli K-12 and S. typhimurium LT2, the first base of the translational start ATG of glgA overlaps with the third base TAA stop codon of the glgC gene.  相似文献   

9.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

10.
The methylations of adenine in the sequence -GATC- and of the second cytosine in the sequence - [Formula: see text] - were studied in Salmonella typhimurium and in Salmonella typhi. The study was carried out by using endonucleases which restrict the plasmid pBR322 by cleavage at the sequences -GATC- (DpnI and MboI) and - [Formula: see text] - (EcoRII). The restriction patterns obtained for this plasmid isolated from transformed S. typhimurium and S. typhi were compared with those of pBR322 isolated from Escherichia coli K-12. In E. coli K-12, adenines at the sequence -GATC- and the second cytosines at - [Formula: see text] - are met hylated by enzymes coded for by the genes dam and dem, respectively. From comparison of the restriction patterns obtained, it is concluded that S. typhimurium and S. typhi contain genes responsible for deoxyribonucleic acid methylation equivalent to E. coli K-12 genes dam and dcm.  相似文献   

11.
12.
Based on its genome sequence, the pathway of beta-oxidative fatty acid degradation in Salmonella enterica serovar Typhimurium LT2 has been thought to be identical to the well-characterized Escherichia coli K-12 system. We report that wild-type strains of S. enterica grow on decanoic acid, whereas wild-type E. coli strains cannot. Mutant strains (carrying fadR) of both organisms in which the genes of fatty acid degradation (fad) are expressed constitutively are readily isolated. The S. enterica fadR strains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains). By contrast, E. coli fadR strains grow well on decanoic acid but grow only exceedingly slowly on octanoic acid and fail to grow at all on hexanoic acid. The two wild-type organisms also differed in the ability to grow on oleic acid when FadR was overexpressed. Under these superrepression conditions, E. coli failed to grow, whereas S. enterica grew well. Exchange of the wild-type fadR genes between the two organisms showed this to be a property of S. enterica rather than of the FadR proteins per se. This difference in growth was attributed to S. enterica having higher cytosolic levels of the inducing ligands, long-chain acyl coenzyme As (acyl-CoAs). The most striking results were the differences in the compositions of CoA metabolites of strains grown with octanoic acid or oleic acid. S. enterica cleanly converted all of the acid to acetyl-CoA, whereas E. coli accumulated high levels of intermediate-chain-length products. Exchange of homologous genes between the two organisms showed that the S. enterica FadE and FadBA enzymes were responsible for the greater efficiency of beta-oxidation relative to that of E. coli.  相似文献   

13.
Partial sequencing of the rfa cluster of Salmonella typhimurium LT2 indicated a region of 336 bp between rfaP and rfaB in the site occupied by the rfaS gene in Escherichia coli K-12. This region does not contain a functional rfaS gene, although DNA analysis suggests that the region may have contained an ancestral gene. This conclusion that S. typhimurium LT2 lacks rfaS is supported by its lipopolysaccharide (LPS) gel phenotype, since LT2 does not make the lipooligosaccharide band characteristic of LPS from smooth strains of E. coli K-12.  相似文献   

14.
Hemin-Deficient Mutants of Salmonella typhimurium   总被引:13,自引:9,他引:4       下载免费PDF全文
Nine hemin-deficient mutants of Salmonella typhimurium LT2 were isolated as neomycin-resistant colonies. Five of these mutants could be stimulated by Delta-aminolevulinic acid (Delta-ALA), thus representing hemA mutants. Since S. typhimurium LT2 is not able to incorporate hemin, the identification of the mutants not stimulated by Delta-ALA was made on the basis of the simultaneous loss of catalase activity and cytochromes. The hemA gene was mapped by conjugation in the trp region, probably in the order purB-pyrD-hemA-trp; the episome FT(71)trp does not carry the hemA gene. Transductional intercrosses by phage P22 indicate that hemA 11, 12, 13, and 37 are at very closely linked sites, whereas hemA14 is at a more distant site in the same or an adjacent gene. No joint transduction was detected between hemA and trp or pyrF. The loci affected in the other hemin-deficient mutants were linked in conjugation to the pro(+) marker (frequency of linkage, 88 to 97%), but cotransduction of the two markers could not be obtained. The episome F lac hem purE, which originates from Escherichia coli K-12, could complement these hemin-deficient mutants of S. typhimurium LT2. As a result, the sequence of the markers on the chromosome of S. typhimurium LT2 is probably pro heme purE, analogous to the sequence found in E. coli K-12. Thus, the chromosome of S. typhimurium also possesses two hem regions, with a location similar to that described in E. coli K-12.  相似文献   

15.
The chromosomal locations of the supX and opp loci of Salmonella typhimurium LT2 and Escherichia coli K-12 were identified and found to result in the same gene sequence in both species, namely, pyrF-cysB-supX-trpPOLEDCBA-tonB(chr)-opp. These results differ from a previously reported location of the opp gene on the E. coli chromosome. Evidence indicates that the opp gene lies between chr(tonB) and galU in S. typhimurium.  相似文献   

16.
L. Wang  L. K. Romana    P. R. Reeves 《Genetics》1992,130(3):429-443
Salmonella enterica is highly polymorphic for the O antigen, a surface polysaccharide that is subject to intense selection by the host immune system. This polymorphism is used for serotyping Salmonella isolates. The genes encoding O antigen biosynthesis are located in the rfb gene cluster. We report here the cloning and sequence of the 19-kb rfb region from strain M32 (serovar anatum, group E1) and compare it with that of strain LT2 (serovar typhimurium, group B). Genes for biosynthetic pathways common to both strains are conserved and have very similar sequences. In contrast, the five genes for CDP-abequose synthesis, present in strain LT2, are absent in strain M32; three open reading frames (ORFs) of strain LT2, thought to include genes for transferases, are not present in strain M32 but are replaced by three different ORFs with little or low level of similarity. Both rfb gene clusters are low in G + C content, indicating that they were transferred from a common ancestral species with low G + C content to S. enterica relatively recently (in the evolutionary sense). We discuss the recombination and lateral transfer events which may have been involved in the evolution of the polymorphism.  相似文献   

17.
Gene ilvY of Salmonella typhimurium.   总被引:7,自引:6,他引:1       下载免费PDF全文
Evidence is presented for the existence in Salmonella typhimurium LT2 of the regulatory gene ilv Y. The Escherichia coli K-12 ilvY gene product is shown to complement a S. typhimurium ilvY mutation in vivo.  相似文献   

18.
Omp-28 isolated from Salmonella enterica serovar typhi presented a subunit molecular mass of 9,632 Da by MALDI-TOF MS. It was denatured, S-alkylated, and 1) directly submitted to Edman sequencing, 2) cleaved with CNBr, and 3) hydrolyzed either with endoproteinase Glu-C or Asp-N. The major CNBr peptide containing the C-terminal portion of Omp-28 was isolated by tricine-SDS-PAGE and electroblotted whereas Omp-28 enzymatic peptides were isolated by C18-RP-HPLC. All peptides were sequenced. This approach allowed the elucidation of the complete primary structure of Omp-28. Its amino acid sequence is identical to that deduced from part of the DNA of the "putative periplasmic transport protein" of either S. enterica serovar typhimurium and a multiple drug resistant S. enterica serovar typhi. Omp-28 homologous protein sequences were also deduced from Escherichia coli and Yersinia pestis genomic DNA. All proteins had their secondary structures predicted. Immunogold cytochemistry indicated that Omp-28 is found on the bacterium outer membrane.  相似文献   

19.
Enterohemorrhagic Escherichia coli O145 strains are emerging as causes of hemorrhagic colitis and hemolytic uremic syndrome. In this study, we present the structure of the E. coli O145 O antigen and the sequence of its gene cluster. The O145 antigen has repeat units containing three monosaccharide residues: 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamidoylamino-2,6-dideoxy-L-galactose, and N-acetylneuraminic acid. It is very closely related to Salmonella enterica serovar Touera and S. enterica subsp. arizonae O21 antigen. The E. coli O145 gene cluster is located between the JUMPStart sequence and the gnd gene and consists of 15 open reading frames. Putative genes for the synthesis of the O-antigen constituents, for sugar transferase, and for O-antigen processing were annotated based on sequence similarities and the presence of conserved regions. The putative genes located in the E. coli O145 O-antigen gene cluster accounted for all functions expected for synthesis of the structure. An E. coli O145 serogroup-specific PCR assay based on the genes wzx and wzy was also developed by screening E. coli and Shigella isolates of different serotypes.  相似文献   

20.
The horizontal transfer and acquisition of virulence genes via mobile genetic elements have been a major driving force in the evolution of Salmonella pathogenicity. Serovars of Salmonella enterica carry variable assortments of phage-encoded virulence genes, suggesting that temperate phages play a pivotal role in this process. Epidemic isolates of S. enterica serovar Typhimurium are consistently lysogenic for two lambdoid phages, Gifsy-1 and Gifsy-2, carrying known virulence genes. Other serovars of S. enterica, including serovars Dublin, Gallinarum, Enteritidis, and Hadar, carry distinct prophages with similarity to the Gifsy phages. In this study, we analyzed Gifsy-related loci from S. enterica serovar Abortusovis, a pathogen associated exclusively with ovine infection. A cryptic prophage, closely related to serovar Typhimurium phage Gifsy-2, was identified. This element, named Gifsy-2AO, was shown to contribute to serovar Abortusovis systemic infection in lambs. Sequence analysis of the prophage b region showed a large deletion which covers genes encoding phage tail fiber proteins and putative virulence factors, including type III secreted effector protein SseI (GtgB, SrfH). This deletion was identified in most of the serovar Abortusovis isolates tested and might be dependent on the replicative transposition of an adjacent insertion sequence, IS1414, previously identified in pathogenic Escherichia coli strains. IS1414 encodes heat-stable toxin EAST1 (astA) and showed multiple genomic copies in isolates of serovar Abortusovis. To our knowledge, this is the first evidence of intergeneric transfer of virulence genes via insertion sequence elements in Salmonella. The acquisition of IS1414 (EAST1) and its frequent transposition within the chromosome might improve the fitness of serovar Abortusovis within its narrow ecological niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号